About: Python Machine Learning Toolkit Changes:Added LASSO (using coordinate descent optimization). Made SVM classification (learning and applying) much faster: 2.5x speedup on yeast UCI dataset.
|
About: Model-Based Boosting Changes:Fetched by r-cran-robot on 2013-04-01 00:00:06.324985
|
About: A Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Dynamically generates CPU and GPU modules for good performance. Deep Learning Tutorials illustrate deep learning with Theano. Changes:Theano 1.0.2 (23rd of May, 2018)This is a maintenance release of Theano, version We recommend that everybody update to this version. Highlights (since 1.0.1):
A total of 6 people contributed to this release since
|
About: machine learning library in java for easy development of new kernels and kernel algorithms Changes:Version 3.0 /! Warning: this version is incompatible with previous code
|
About: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly Changes:Fetched by r-cran-robot on 2018-01-01 00:00:07.696284
|
About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models. Changes:Logdet-estimation functionality for grid-based approximate covariances
More generic infEP functionality
New infKL function contributed by Emtiyaz Khan and Wu Lin
Time-series covariance functions on the positive real line
New covariance functions
|
About: Script-friendly command-line tools for machine learning and data mining tasks. (The command-line tools wrap functionality from a public domain C++ class library.) Changes:Added support for CUDA GPU-parallelized neural network layers, and several other new features. Full list of changes at http://waffles.sourceforge.net/docs/changelog.html
|
About: Link Prediction Made Easy Changes:v1.2.2
|
About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields. Changes:Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.
|
About: Wrapper Algorithm for All Relevant Feature Selection Changes:Fetched by r-cran-robot on 2018-09-01 00:00:04.516878
|
About: Somoclu is a massively parallel implementation of self-organizing maps. It relies on OpenMP for multicore execution, MPI for distributing the workload, and it can be accelerated by CUDA on a GPU cluster. A sparse kernel is also included, which is useful for training maps on vector spaces generated in text mining processes. Apart from a command line interface, Python, Julia, R, and MATLAB are supported. Changes:
|
About: The Advanced Data mining And Machine learning System (ADAMS) is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes. Changes:Some highlights:
|
About: Tools to convert datasets from various formats to various formats, performance measures and API functions to communicate with mldata.org Changes:
|
About: SVDFeature is a toolkit for developing generic collaborative filtering algorithms by defining features. Changes:JMLR MLOSS version.
|
About: Variational Bayesian inference tools for Python Changes:
|
About: R/Weka interface Changes:Fetched by r-cran-robot on 2012-02-01 00:00:11.330277
|
About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details. Changes:For a complete list of changes, please see the full release notes at the release details page at: https://github.com/accord-net/framework/releases/tag/v3.8.0
|
About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning. Changes:New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)
|
About: MSVMpack is a Multi-class Support Vector Machine (M-SVM) package. It is dedicated to SVMs which can handle more than two classes without relying on decomposition methods and implements the four M-SVM models from the literature: Weston and Watkins M-SVM, Crammer and Singer M-SVM, Lee, Lin and Wahba M-SVM, and the M-SVM2 of Guermeur and Monfrini. Changes:
|
About: Kernel-based Learning Platform (KeLP) is Java framework that supports the implementation of kernel-based learning algorithms, as well as an agile definition of kernel functions over generic data representation, e.g. vectorial data or discrete structures. The framework has been designed to decouple kernel functions and learning algorithms, through the definition of specific interfaces. Once a new kernel function has been implemented, it can be automatically adopted in all the available kernel-machine algorithms. KeLP includes different Online and Batch Learning algorithms for Classification, Regression and Clustering, as well as several Kernel functions, ranging from vector-based to structural kernels. It allows to build complex kernel machine based systems, leveraging on JSON/XML interfaces to instantiate prediction models without writing a single line of code. Changes:In addition to minor improvements and bug fixes, this release includes:
Check out this new version from our repositories. API Javadoc is already available. Your suggestions will be very precious for us, so download and try KeLP 2.2.2!
|