All entries.
Showing Items 21-40 of 676 on page 2 of 34: Previous 1 2 3 4 5 6 7 Next Last

Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 4.1

by hn - November 27, 2017, 19:26:13 CET [ Project Homepage BibTeX Download ] 81024 views, 17796 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models.

Changes:

Logdet-estimation functionality for grid-based approximate covariances

  • Lanczos subspace estimation

  • Chebyshef polynomial expansion

More generic infEP functionality

  • dense computations and sparse approximations using the same code

  • covering KL inference as a special cas of EP

New infKL function contributed by Emtiyaz Khan and Wu Lin

  • Conjugate-Computation Variational Inference algorithm

  • much more scalable than previous versions

Time-series covariance functions on the positive real line

  • covW (i-times integrated) Wiener process covariance

  • covOU (i-times integrated) Ornstein-Uhlenbeck process covariance (contributed by Juan Pablo Carbajal)

  • covULL underdamped linear Langevin process covariance (contributed by Robert MacKay)

  • covFBM Fractional Brownian motion covariance

New covariance functions

  • covWarp implements k(w(x),w(z)) where w is a "warping" function

  • covMatern has been extended to also accept non-integer distance parameters


Logo JMLR JKernelMachines 3.0

by dpicard - May 4, 2016, 17:53:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 88451 views, 17772 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 4 votes)

About: machine learning library in java for easy development of new kernels and kernel algorithms

Changes:

Version 3.0

/! Warning: this version is incompatible with previous code

  • change license to BSD 3-clauses
  • change package name to net.jkernelmachines
  • change to maven build system (available through central)
  • online training interfaces to allow continuous online learning
  • add a new budget oriented kernel classifier
  • new kernel and processing especially for strings

Logo Milk 0.5

by luispedro - November 7, 2012, 13:08:28 CET [ Project Homepage BibTeX Download ] 70439 views, 17647 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 2 votes)

About: Python Machine Learning Toolkit

Changes:

Added LASSO (using coordinate descent optimization). Made SVM classification (learning and applying) much faster: 2.5x speedup on yeast UCI dataset.


Logo JMLR Waffles 2014-07-05

by mgashler - July 20, 2014, 04:53:54 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 76925 views, 17625 downloads, 0 subscriptions

About: Script-friendly command-line tools for machine learning and data mining tasks. (The command-line tools wrap functionality from a public domain C++ class library.)

Changes:

Added support for CUDA GPU-parallelized neural network layers, and several other new features. Full list of changes at http://waffles.sourceforge.net/docs/changelog.html


Logo JMLR libDAI 0.3.2

by jorism - July 17, 2015, 15:59:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 89278 views, 17392 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields.

Changes:

Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.


Logo r-cran-e1071 1.6-8

by r-cran-robot - January 1, 2018, 00:00:07 CET [ Project Homepage BibTeX Download ] 78017 views, 17390 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly

Changes:

Fetched by r-cran-robot on 2018-01-01 00:00:07.696284


Logo JMLR LPmade 1.2.2

by rlichten - April 2, 2012, 17:11:59 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 56252 views, 17198 downloads, 0 subscriptions

About: Link Prediction Made Easy

Changes:

v1.2.2

  • Fixed MAJOR issue related to github migration several months ago. The original github commit neglected to import empty folders. This caused parts of the project compilation procedure to fail. Any users of LPmade who downloaded the most recent version from github over the last several months would have encountered this build error and should download the most recent version. This change updates the network library makefile to create the empty folders and gets around the issue. Very sorry to anybody that this may have inconvenienced, but thanks for hanging in there if you diagnosed and solved it yourself.

  • Fixed issue with auroc on 32-bit architectures that caused integer wraparounds that produced incorrect results.


Logo Theano 1.0.2

by jaberg - May 23, 2018, 16:34:31 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 94110 views, 17085 downloads, 0 subscriptions

About: A Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Dynamically generates CPU and GPU modules for good performance. Deep Learning Tutorials illustrate deep learning with Theano.

Changes:

Theano 1.0.2 (23rd of May, 2018)

This is a maintenance release of Theano, version 1.0.2, with no new features, but some important bug fixes.

We recommend that everybody update to this version.

Highlights (since 1.0.1):

  • Theano should work under PyPy now (this is experimental).
  • Update for cuDNN 7.1 RNN API changes.
  • Fix for a crash related to mixed dtypes with cuDNN convolutions.
  • MAGMA should work in more cases without manual config.
  • Handle reductions with non-default accumulator dtype better on the GPU.
  • Improvements to the test suite so that it fails less often due to random chance.

A total of 6 people contributed to this release since 1.0.1:

  • Frederic Bastien
  • Steven Bocco
  • Jon Haygood
  • Arnaud Bergeron
  • Jordan Melendez
  • Desiree Vogt-Lee
  • Garming Sam
  • Pascal Lamblin
  • Vincent Dumoulin
  • Glexin
  • Simon Lefrancois

Logo Probabilistic Classification Vector Machine 0.22

by fmschleif - November 10, 2015, 13:16:19 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 93537 views, 16951 downloads, 0 subscriptions

About: PCVM library a c++/armadillo implementation of the Probabilistic Classification Vector Machine.

Changes:

30.10.2015 * code has been revised in some places fixing also some errors different multiclass schemes and hdf5 file support added. Some speed ups and memory savings by better handling of intermediate objects.

27.05.2015: - Matlab binding under Windows available. Added a solution file for VS'2013 express to compile a matlab mex binding. Can not yet confirm that under windows the code is really using multiple cores (under linux it does)

29.04.2015 * added an implementation of the Nystroem based PCVM includes: Nystroem based singular value decomposition (SVD), eigenvalue decomposition (EVD) and pseudo-inverse calculation (PINV)

22.04.2015 * implementation of the PCVM released


Logo r-cran-Boruta 6.0.0

by r-cran-robot - September 1, 2018, 00:00:04 CET [ Project Homepage BibTeX Download ] 70004 views, 15895 downloads, 0 subscriptions

About: Wrapper Algorithm for All Relevant Feature Selection

Changes:

Fetched by r-cran-robot on 2018-09-01 00:00:04.516878


Logo Somoclu 1.7.5

by peterwittek - March 1, 2018, 23:30:34 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 83758 views, 15228 downloads, 0 subscriptions

About: Somoclu is a massively parallel implementation of self-organizing maps. It relies on OpenMP for multicore execution, MPI for distributing the workload, and it can be accelerated by CUDA on a GPU cluster. A sparse kernel is also included, which is useful for training maps on vector spaces generated in text mining processes. Apart from a command line interface, Python, Julia, R, and MATLAB are supported.

Changes:
  • New: A Makefile for mingw to build on Windows.
  • Changed: PR #94 added a much more efficient sparse kernel.
  • Changed: boilerplate code for Julia greatly improved.
  • Changed: Code cleanup, pre-processor macros simplified.
  • Changed: Adapted to Seaborn API changes in plotting heatmaps.

Logo mldata-utils 0.5.0

by sonne - April 8, 2011, 10:02:44 CET [ Project Homepage BibTeX Download ] 69962 views, 15046 downloads, 0 subscriptions

About: Tools to convert datasets from various formats to various formats, performance measures and API functions to communicate with mldata.org

Changes:
  • Change task file format, such that data splits can have a variable number items and put into up to 256 categories of training/validation/test/not used/...
  • Various bugfixes.

Logo SVDFeature, A Toolkit for Informative Collaborative Filtering 1.2.2

by crowwork - January 9, 2013, 02:21:18 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 93139 views, 14995 downloads, 0 subscriptions

About: SVDFeature is a toolkit for developing generic collaborative filtering algorithms by defining features.

Changes:

JMLR MLOSS version.


Logo ADAMS 17.12.0

by fracpete - December 20, 2017, 09:38:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 75917 views, 14677 downloads, 0 subscriptions

About: The Advanced Data mining And Machine learning System (ADAMS) is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes.

Changes:

Some highlights:

  • Code base was moved to Github
  • Nearly 90 new actors, 25 new conversions
  • much improved deeplearning4j module
  • experimental support for Microsoft's CNTK deep learning framework
  • rsync module
  • MEKA webservice module
  • improved support for image annotations
  • improved LaTeX support
  • Websocket support

Logo r-cran-RWeka 0.4-10

by r-cran-robot - January 10, 2012, 00:00:00 CET [ Project Homepage BibTeX Download ] 58978 views, 14357 downloads, 0 subscriptions

About: R/Weka interface

Changes:

Fetched by r-cran-robot on 2012-02-01 00:00:11.330277


Logo JMLR MSVMpack 1.5.1

by lauerfab - March 9, 2017, 12:29:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 58144 views, 14213 downloads, 0 subscriptions

About: MSVMpack is a Multi-class Support Vector Machine (M-SVM) package. It is dedicated to SVMs which can handle more than two classes without relying on decomposition methods and implements the four M-SVM models from the literature: Weston and Watkins M-SVM, Crammer and Singer M-SVM, Lee, Lin and Wahba M-SVM, and the M-SVM2 of Guermeur and Monfrini.

Changes:
  • Fix compilation error with recent gcc

Logo JMLR Continuous Time Bayesian Network Reasoning and Learning Engine 1.1.1

by cshelton - December 9, 2013, 18:44:02 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 47698 views, 14110 downloads, 0 subscriptions

About: The CTBN-RLE is a C++ package of executables and libraries for inference and learning algorithms for continuous time Bayesian networks (CTBNs).

Changes:

compilation problems fixed


Logo MLDemos 0.5.1

by basilio - March 2, 2013, 16:06:13 CET [ Project Homepage BibTeX Download ] 61415 views, 14086 downloads, 0 subscriptions

About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning.

Changes:

New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance

New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)


Logo Accord.NET Framework 3.8.0

by cesarsouza - October 23, 2017, 20:50:27 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 72576 views, 14073 downloads, 0 subscriptions

About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details.

Changes:

For a complete list of changes, please see the full release notes at the release details page at:

https://github.com/accord-net/framework/releases/tag/v3.8.0


Logo JMLR Mulan 1.5.0

by lefman - February 23, 2015, 21:19:05 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 51593 views, 13677 downloads, 0 subscriptions

About: Mulan is an open-source Java library for learning from multi-label datasets. Multi-label datasets consist of training examples of a target function that has multiple binary target variables. This means that each item of a multi-label dataset can be a member of multiple categories or annotated by many labels (classes). This is actually the nature of many real world problems such as semantic annotation of images and video, web page categorization, direct marketing, functional genomics and music categorization into genres and emotions.

Changes:

Learners

  • MLCSSP.java: Added the MLCSSP algorithm (from ICML 2013)
  • Enhancements of multi-target regression capabilities
  • Improved CLUS support
  • Added pairwise classifier and pairwise transformation

Measures/Evaluation

  • Providing training data in the Evaluator is unnecessary in the case of specific measures.
  • Examples with missing ground truth are not skipped for measures that handle missing values.
  • Added logistics and squared error losses and measures

Bug fixes

  • IndexOutOfBounds in calculation of MiAP and GMiAP
  • Bug fix in Rcut.java
  • When in rank/score mode the meta-data contained additional unecessary attributes. (Newton Spolaor)

API changes

  • Upgrade to Java 7
  • Upgrade to Weka 3.7.10

Miscalleneous

  • Small changes and improvements in the wrapper classes for the CLUS library
  • ENTCS13FeatureSelection.java (new experiment)
  • Enumeration is now used for specifying the type of meta-data. (Newton Spolaor)

Showing Items 21-40 of 676 on page 2 of 34: Previous 1 2 3 4 5 6 7 Next Last