About: A fast, flexible C++ machine learning library, with bindings to other languages. Changes:Released June 8th, 2018.
|
About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. Changes:This release adds a bunch of new image processing routines as well as many minor usability improvements and bug fixes.
|
About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models. Changes:Logdet-estimation functionality for grid-based approximate covariances
More generic infEP functionality
New infKL function contributed by Emtiyaz Khan and Wu Lin
Time-series covariance functions on the positive real line
New covariance functions
|
About: A Java framework for statistical analysis and classification of biological sequences Changes:New classes and packages:
New features and improvements:
|
About: MSVMpack is a Multi-class Support Vector Machine (M-SVM) package. It is dedicated to SVMs which can handle more than two classes without relying on decomposition methods and implements the four M-SVM models from the literature: Weston and Watkins M-SVM, Crammer and Singer M-SVM, Lee, Lin and Wahba M-SVM, and the M-SVM2 of Guermeur and Monfrini. Changes:
|
About: The scikit-learn project is a machine learning library in Python. Changes:Update for 0.18 .1
|
About: ITE (Information Theoretical Estimators) is capable of estimating many different variants of entropy, mutual information, divergence, association measures, cross quantities and kernels on distributions. Thanks to its highly modular design, ITE supports additionally (i) the combinations of the estimation techniques, (ii) the easy construction and embedding of novel information theoretical estimators, and (iii) their immediate application in information theoretical optimization problems. Changes:
|
About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods. Changes:2016-06-09 Version 4.7 Development and release branches available at https://github.com/gpstuff-dev/gpstuff New features
Improvements
Bugfixes
|
About: machine learning library in java for easy development of new kernels and kernel algorithms Changes:Version 3.0 /! Warning: this version is incompatible with previous code
|
About: A platform-independent C++ framework for machine learning, graphical models, and computer vision research and development. Changes:Version 1.9:
|
About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields. Changes:Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.
|
About: A Tool for Embedding Strings in Vector Spaces Changes:Support for explicit selection of granularity added. Several minor bug fixes. We have reached 1.0
|
About: Mulan is an open-source Java library for learning from multi-label datasets. Multi-label datasets consist of training examples of a target function that has multiple binary target variables. This means that each item of a multi-label dataset can be a member of multiple categories or annotated by many labels (classes). This is actually the nature of many real world problems such as semantic annotation of images and video, web page categorization, direct marketing, functional genomics and music categorization into genres and emotions. Changes:Learners
Measures/Evaluation
Bug fixes
API changes
Miscalleneous
|
About: The DL-Learner framework contains several algorithms for supervised concept learning in Description Logics (DLs) and OWL. Changes:See http://dl-learner.org/development/changelog/.
|
About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line. Changes:This release features the work of our 8 GSoC 2014 students [student; mentors]:
It also contains several cleanups and bugfixes: Features
Bugfixes
Cleanup and API Changes
|
About: A template based C++ reinforcement learning library Changes:Initial Announcement on mloss.org.
|
About: Script-friendly command-line tools for machine learning and data mining tasks. (The command-line tools wrap functionality from a public domain C++ class library.) Changes:Added support for CUDA GPU-parallelized neural network layers, and several other new features. Full list of changes at http://waffles.sourceforge.net/docs/changelog.html
|
About: Tapkee is an efficient and flexible C++ template library for dimensionality reduction. Changes:Initial Announcement on mloss.org.
|
About: Massive Online Analysis (MOA) is a real time analytic tool for data streams. It is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and it is released under the GNU GPL license. Changes:New version November 2013
|
About: MultiBoost is a multi-purpose boosting package implemented in C++. It is based on the multi-class/multi-task AdaBoost.MH algorithm [Schapire-Singer, 1999]. Basic base learners (stumps, trees, products, Haar filters for image processing) can be easily complemented by new data representations and the corresponding base learners, without interfering with the main boosting engine. Changes:Major changes :
Minor fixes:
|