Reproducibility is not simple
Posted by Cheng Soon Ong on March 30, 2014
There has been a flurry of articles recently outlining 10 simple rules for X, where X has something to do with data science, computational research and reproducibility. Some examples are:
- 10 Simple Rules for the Care and Feeding of Scientific Data (kudos for using a open collaborative writing tool!)
- Ten Simple Rules for Reproducible Computational Research
- Ten Simple Rules for Effective Computational Research
Best practices
These articles provide a great resource to get started on the long road to doing "proper science". Some common suggestions which are relevant to practical machine learning include:
Use version control
Start now. No, not after your next paper, do it right away! Learn one of the modern distributed version control systems, git or mercurial currently being the most popular, and get an account on github or bitbucket to start sharing. Even if you don't share your code, it is a convenient offsite backup. Github is the most popular for open source projects, but bitbucket has the advantage of free private accounts. If you have an email address from an educational institution, you get the premium features for free too.
Distributed version control systems can be conceptually daunting, but it is well worth the trouble to understand the concepts instead of just robotically type in commands. There are numerous tutorials out there, and here are some which I personally found entertaining, git foundations and hginit. For those who don't like the command line, have a look at GUIs such as sourcetree, tortoisegit, tortoisehg, and gitk. If you work with other people, it is worth learning the fork and pull request model, and use the gitflow convention.
Please add your favourite tips and tricks in the comments below!
Open source your code and scripts
Publish everything. Even the two lines of Matlab that you used to plot your results. The readers of your NIPS and ICML papers are technical people, and it is often much simpler for them to look at your Matlab plot command than to parse the paragraph that describes the x and y axes, the meaning of the colours and line types, and the specifics of the displayed error bars. Tools such as ipython notebooks and knitr are examples of easy to implement literate programming frameworks that allow you to make your supplement a live document.
It is often useful to try to conceptually split your computational code into "programs" and "scripts". There is no hard and fast rule for where to draw the line, but one useful way to think about it is to contrast code that can be reused (something to be installed), and code that runs an experiment (something that describes your protocol). An example of the former is your fancy new low memory logistic regression training and testing code. An example of the latter is code to generate your plots. Make both types of code open, document and test them well.
Make your data a resource
Your result is also data. When open data is mentioned, most people immediately conjure images of the inputs to prediction machines. But intermediate stages of your workflow are often left out of making things available. For example, if in addition to providing the two lines of code for plotting, you also provided your multidimensional array containing your results, your paper now becomes a resource for future benchmarking efforts. If you made your precomputed kernel matrices available, other people can easily try out new kernel methods without having to go through the effort of computing the kernel.
Efforts such as mldata.org and mlcomp.org provide useful resources to host machine learning oriented datasets. If you do create a dataset, it is useful to get an identifier for it so that people can give you credit.
Challenges to open science
While the articles call these rules "simple", they are by no means easy to implement. While easy to state, there are many practical hurdles to making every step of your research reproducible .
Social coding
Unlike publishing a paper, where you do all your work before publication, publishing a piece of software often means that you have to support it in future. It is remarkably difficult to keep software available in the long term, since most junior researchers move around a lot and often leave academia altogether. It is also challenging to find contributors that can help out in stressful periods, and to keep software up to date and useful. Open source software suffers from the tragedy of the commons, and it quickly becomes difficult to maintain.
While it is generally good for science that everything is open and mistakes are found and corrected, the current incentive structure in academia does not reward support for ongoing projects. Funding is focused on novel ideas, publications are used as metrics for promotion and tenure, and software gets left out.
The secret branch
When developing a new idea, it is often tempting to do so without making it open to public scrutiny. This is similar to the idea of a development branch, but you may wish to keep it secret until publication. The same argument applies for data and results, where there may be a moratorium. I am currently unaware of any tools that allow easy conversion between public and private branches. Github allows forks of repositories, which you may be able to make private.
Once a researcher gets fully involved in an application area, it is inevitable that he starts working on the latest data generated by his collaborators. This could be the real time stream from Twitter or the latest double blind drug study. Such datasets are often embargoed from being made publicly available due to concerns about privacy. In the area of biomedical research there are efforts to allow bona fide researchers access to data, such as dbGaP. It seamlessly provides a resource for public and private data. Instead of a hurdle, a convenient mechanism to facilitate the transition from private to open science would encourage many new participants.
What is the right access control model for open science?
Data is valuable
It is a natural human tendency to protect a scarce resource which gives them a competitive advantage. For researchers, these resources include source code and data. While it is understandable that authors of software or architects of datasets would like to be the first to benefit from their investment, it often happens that these resources are not made publicly available even after publication.
Comments
Leave a comment
You must be logged in to post comments.
Another reference I personally find useful to learn about branching with Git.