All entries.
Showing Items 1-20 of 676 on page 1 of 34: 1 2 3 4 5 6 Next Last

Logo JMLR dlib ml 19.11

by davis685 - May 18, 2018, 04:19:52 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 368708 views, 60534 downloads, 0 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release adds a bunch of new image processing routines as well as many minor usability improvements and bug fixes.


Logo r-cran-caret 6.0-78

by r-cran-robot - January 1, 2018, 00:00:05 CET [ Project Homepage BibTeX Download ] 255968 views, 55269 downloads, 0 subscriptions

About: Classification and Regression Training

Changes:

Fetched by r-cran-robot on 2018-01-01 00:00:05.042473


Logo JMLR Information Theoretical Estimators 0.63

by szzoli - June 9, 2016, 23:42:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 271670 views, 48402 downloads, 0 subscriptions

About: ITE (Information Theoretical Estimators) is capable of estimating many different variants of entropy, mutual information, divergence, association measures, cross quantities and kernels on distributions. Thanks to its highly modular design, ITE supports additionally (i) the combinations of the estimation techniques, (ii) the easy construction and embedding of novel information theoretical estimators, and (iii) their immediate application in information theoretical optimization problems.

Changes:
  • Conditional Shannon entropy estimation: added.

  • Conditional Shannon mutual information estimation: included.


Logo Armadillo library 8.500

by cu24gjf - April 23, 2018, 17:29:44 CET [ Project Homepage BibTeX Download ] 234346 views, 48392 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 3 votes)

About: Armadillo is a high quality C++ library for linear algebra & scientific computing, aiming towards a good balance between speed and ease of use. The function syntax is deliberately similar to MATLAB. Useful for algorithm development directly in C++, or quick conversion of research code into production environments (eg. software & hardware products).

Changes:
  • faster handling of sparse matrices by kron() and repmat()
  • faster transpose of sparse matrices
  • faster element access in sparse matrices
  • faster row iterators for sparse matrices
  • faster handling of compound expressions by trace()
  • more efficient handling of aliasing in submatrix views
  • expanded normalise() to handle sparse matrices
  • expanded .transform() and .for_each() to handle sparse matrices
  • added reverse() for reversing order of elements
  • added repelem() for replicating elements
  • added roots() for finding the roots of a polynomial

Logo JMLR MLPACK 3.0.2

by rcurtin - June 9, 2018, 18:03:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 193719 views, 33922 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A fast, flexible C++ machine learning library, with bindings to other languages.

Changes:

Released June 8th, 2018.

  • Documentation generation fixes for Python bindings (#1421).
  • Fix build error for man pages if command-line bindings are not being built (#1424).
  • Add shuffle parameter and Shuffle() method to KFoldCV (#1412). This will shuffle the data when the object is constructed, or when Shuffle() is called.
  • Added neural network layers: AtrousConvolution (#1390), Embedding (#1401), and LayerNorm (layer normalization) (#1389).
  • Add Pendulum environment for reinforcement learning (#1388) and update Mountain Car environment (#1394).

Logo JMLR SHOGUN 4.0.0

by sonne - February 5, 2015, 09:09:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 192762 views, 29573 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.

Changes:

This release features the work of our 8 GSoC 2014 students [student; mentors]:

  • OpenCV Integration and Computer Vision Applications [Abhijeet Kislay; Kevin Hughes]
  • Large-Scale Multi-Label Classification [Abinash Panda; Thoralf Klein]
  • Large-scale structured prediction with approximate inference [Jiaolong Xu; Shell Hu]
  • Essential Deep Learning Modules [Khaled Nasr; Sergey Lisitsyn, Theofanis Karaletsos]
  • Fundamental Machine Learning: decision trees, kernel density estimation [Parijat Mazumdar ; Fernando Iglesias]
  • Shogun Missionary & Shogun in Education [Saurabh Mahindre; Heiko Strathmann]
  • Testing and Measuring Variable Interactions With Kernels [Soumyajit De; Dino Sejdinovic, Heiko Strathmann]
  • Variational Learning for Gaussian Processes [Wu Lin; Heiko Strathmann, Emtiyaz Khan]

It also contains several cleanups and bugfixes:

Features

  • New Shogun project description [Heiko Strathmann]
  • ID3 algorithm for decision tree learning [Parijat Mazumdar]
  • New modes for PCA matrix factorizations: SVD & EVD, in-place or reallocating [Parijat Mazumdar]
  • Add Neural Networks with linear, logistic and softmax neurons [Khaled Nasr]
  • Add kernel multiclass strategy examples in multiclass notebook [Saurabh Mahindre]
  • Add decision trees notebook containing examples for ID3 algorithm [Parijat Mazumdar]
  • Add sudoku recognizer ipython notebook [Alejandro Hernandez]
  • Add in-place subsets on features, labels, and custom kernels [Heiko Strathmann]
  • Add Principal Component Analysis notebook [Abhijeet Kislay]
  • Add Multiple Kernel Learning notebook [Saurabh Mahindre]
  • Add Multi-Label classes to enable Multi-Label classification [Thoralf Klein]
  • Add rectified linear neurons, dropout and max-norm regularization to neural networks [Khaled Nasr]
  • Add C4.5 algorithm for multiclass classification using decision trees [Parijat Mazumdar]
  • Add support for arbitrary acyclic graph-structured neural networks [Khaled Nasr]
  • Add CART algorithm for classification and regression using decision trees [Parijat Mazumdar]
  • Add CHAID algorithm for multiclass classification and regression using decision trees [Parijat Mazumdar]
  • Add Convolutional Neural Networks [Khaled Nasr]
  • Add Random Forests algorithm for ensemble learning using CART [Parijat Mazumdar]
  • Add Restricted Botlzmann Machines [Khaled Nasr]
  • Add Stochastic Gradient Boosting algorithm for ensemble learning [Parijat Mazumdar]
  • Add Deep contractive and denoising autoencoders [Khaled Nasr]
  • Add Deep belief networks [Khaled Nasr]

Bugfixes

  • Fix reference counting bugs in CList when reference counting is on [Heiko Strathmann, Thoralf Klein, lambday]
  • Fix memory problem in PCA::apply_to_feature_matrix [Parijat Mazumdar]
  • Fix crash in LeastAngleRegression for the case D greater than N [Parijat Mazumdar]
  • Fix memory violations in bundle method solvers [Thoralf Klein]
  • Fix fail in library_mldatahdf5.cpp example when http://mldata.org is not working properly [Parijat Mazumdar]
  • Fix memory leaks in Vowpal Wabbit, LibSVMFile and KernelPCA [Thoralf Klein]
  • Fix memory and control flow issues discovered by Coverity [Thoralf Klein]
  • Fix R modular interface SWIG typemap (Requires SWIG >= 2.0.5) [Matt Huska]

Cleanup and API Changes

  • PCA now depends on Eigen3 instead of LAPACK [Parijat Mazumdar]
  • Removing redundant and fixing implicit imports [Thoralf Klein]
  • Hide many methods from SWIG, reducing compile memory by 500MiB [Heiko Strathmann, Fernando Iglesias, Thoralf Klein]

Logo MyMediaLite 3.10

by zenog - October 8, 2013, 22:29:29 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 158702 views, 29161 downloads, 0 subscriptions

About: MyMediaLite is a lightweight, multi-purpose library of recommender system algorithms.

Changes:

Mostly bug fixes.

For details see: https://github.com/zenogantner/MyMediaLite/blob/master/doc/Changes


Logo OpenOpt 0.54

by Dmitrey - June 15, 2014, 14:50:37 CET [ Project Homepage BibTeX Download ] 127018 views, 27431 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Universal Python-written numerical optimization toolbox. Problems: NLP, LP, QP, NSP, MILP, LSP, LLSP, MMP, GLP, SLE, MOP etc; general logical constraints, categorical variables, automatic differentiation, stochastic programming, interval analysis, many other goodies

Changes:

http://openopt.org/Changelog


Logo WEKA 3.9.2

by mhall - December 22, 2017, 03:39:19 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 125226 views, 27317 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

This release include a lot of bug fixes and improvements. Some of these are detailed at

http://jira.pentaho.com/projects/DATAMINING/issues/DATAMINING-771

As usual, for a complete list of changes refer to the changelogs.


Logo r-cran-arules 1.6-1

by r-cran-robot - April 4, 2018, 00:00:00 CET [ Project Homepage BibTeX Download ] 119876 views, 26756 downloads, 0 subscriptions

About: Mining Association Rules and Frequent Itemsets

Changes:

Fetched by r-cran-robot on 2018-09-01 00:00:03.513366


Logo python weka wrapper 0.3.12

by fracpete - February 18, 2018, 04:29:24 CET [ Project Homepage BibTeX Download ] 123351 views, 26452 downloads, 0 subscriptions

About: A thin Python wrapper that uses the javabridge Python library to communicate with a Java Virtual Machine executing Weka API calls.

Changes:
  • upgraded to Weka 3.9.2
  • properly initializing package support now, rather than adding package jars to classpath
  • added weka.core.ClassHelper Java class for obtaining classes and static fields, as javabridge only uses the system class loader

Logo JMLR Darwin 1.9

by sgould - September 8, 2015, 06:50:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 118427 views, 25318 downloads, 0 subscriptions

About: A platform-independent C++ framework for machine learning, graphical models, and computer vision research and development.

Changes:

Version 1.9:

  • Replaced drwnInPaint class with drwnImageInPainter class and added inPaint application
  • Added function to read CIFAR-10 and CIFAR-100 style datasets (see http://www.cs.utoronto.ca/~kriz/cifar.html)
  • Added drwnMaskedPatchMatch, drwnBasicPatchMatch, drwnSelfPatchMatch and basicPatchMatch application
  • drwnPatchMatchGraph now allows multiple matches to the same image
  • Upgraded wxWidgets to 3.0.2 (problems on Mac OS X)
  • Switched Mac OS X compilation to libc++ instead of libstdc++
  • Added Python scripts for running experiments and regression tests
  • Refactored drwnGrabCutInstance class to support both GMM and colour histogram model
  • Added cacheSortIndex to drwnDecisionTree for trading-off speed versus memory usage
  • Added mexLoadPatchMatchGraph for loading drwnPatchMatchGraph objects into Matlab
  • Improved documentation, other bug fixes and performance improvements

Logo NaN toolbox 3.1.2

by schloegl - January 22, 2017, 12:24:59 CET [ Project Homepage BibTeX Download ] 120082 views, 24972 downloads, 0 subscriptions

About: NaN-toolbox is a statistics and machine learning toolbox for handling data with and without missing values.

Changes:

Changes in v.3.1.2 - improve configuration and build system - support of more platforms (including Octave 4.2.0) improved

Changes in v.3.0.3 - improve compatibility for Octave on Windows

Changes in v.3.0.1 - fix packaging for octave

Changes in v.2.8.5 - bug fix: trimmean - compiler support for gcc-5 and clang - fix typos

For details see the CHANGELOG at http://pub.ist.ac.at/~schloegl/matlab/NaN/CHANGELOG


Logo MLPY Machine Learning Py 3.5.0

by albanese - March 15, 2012, 09:52:41 CET [ Project Homepage BibTeX Download ] 126371 views, 24535 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 3 votes)

About: mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL.

Changes:

New features:

  • LibSvm(): pred_probability() now returns probability estimates; pred_values() added
  • LibLinear(): pred_values() and pred_probability() added
  • dtw_std: squared Euclidean option added
  • LCS for series composed by real values (lcs_real()) added
  • Documentation

Fix:

  • wavelet submodule: cwt(): it returned only real values in morlet and poul
  • IRelief(): remove np. in learn()
  • fix rfe_kfda and rfe_w2 when p=1

Logo JMLR Sally 1.0.0

by konrad - March 26, 2015, 17:01:35 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 97227 views, 18669 downloads, 0 subscriptions

About: A Tool for Embedding Strings in Vector Spaces

Changes:

Support for explicit selection of granularity added. Several minor bug fixes. We have reached 1.0


Logo JMLR scikitlearn 0.18.1

by fabianp - November 28, 2016, 17:45:27 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 57805 views, 18570 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 3 votes)

About: The scikit-learn project is a machine learning library in Python.

Changes:

Update for 0.18 .1


Logo JMLR GPstuff 4.7

by avehtari - June 9, 2016, 17:45:15 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 79532 views, 18162 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

Changes:

2016-06-09 Version 4.7

Development and release branches available at https://github.com/gpstuff-dev/gpstuff

New features

  • Simple Bayesian Optimization demo

Improvements

  • Improved use of PSIS
  • More options added to gp_monotonic
  • Monotonicity now works for additive covariance functions with selected variables
  • Possibility to use gpcf_squared.m-covariance function with derivative observations/monotonicity
  • Default behaviour made more robust by changing default jitter from 1e-9 to 1e-6
  • LA-LOO uses the cavity method as the default (see Vehtari et al (2016). Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. JMLR, accpeted for publication)
  • Selected variables -option works now better with monotonicity

Bugfixes

  • small error in derivative observation computation fixed
  • several minor bug fixes

Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 4.1

by hn - November 27, 2017, 19:26:13 CET [ Project Homepage BibTeX Download ] 77999 views, 16991 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models.

Changes:

Logdet-estimation functionality for grid-based approximate covariances

  • Lanczos subspace estimation

  • Chebyshef polynomial expansion

More generic infEP functionality

  • dense computations and sparse approximations using the same code

  • covering KL inference as a special cas of EP

New infKL function contributed by Emtiyaz Khan and Wu Lin

  • Conjugate-Computation Variational Inference algorithm

  • much more scalable than previous versions

Time-series covariance functions on the positive real line

  • covW (i-times integrated) Wiener process covariance

  • covOU (i-times integrated) Ornstein-Uhlenbeck process covariance (contributed by Juan Pablo Carbajal)

  • covULL underdamped linear Langevin process covariance (contributed by Robert MacKay)

  • covFBM Fractional Brownian motion covariance

New covariance functions

  • covWarp implements k(w(x),w(z)) where w is a "warping" function

  • covMatern has been extended to also accept non-integer distance parameters


Logo r-cran-mboost 2.2-2

by r-cran-robot - February 8, 2013, 00:00:00 CET [ Project Homepage BibTeX Download ] 85963 views, 16875 downloads, 0 subscriptions

About: Model-Based Boosting

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:06.324985


Logo r-cran-party 1.0-6

by r-cran-robot - January 9, 2013, 00:00:00 CET [ Project Homepage BibTeX Download ] 71857 views, 16849 downloads, 0 subscriptions

About: A Laboratory for Recursive Partytioning

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:06.775432


Showing Items 1-20 of 676 on page 1 of 34: 1 2 3 4 5 6 Next Last