About: MLwizard recommends and optimizes classification algorithms based on meta-learning and is a software wizard fully integrated into RapidMiner but can be used as library as well. Changes:Faster parameter optimization using genetic algorithm with predefined start population.
|
About: Motivated by a need to classify high-dimensional, heterogeneous data from the bioinformatics domain, we developed ML-Flex, a machine-learning toolbox that enables users to perform two-class and multi-class classification analyses in a systematic yet flexible manner. ML-Flex was written in Java but is capable of interfacing with third-party packages written in other programming languages. It can handle multiple input-data formats and supports a variety of customizations. MLFlex provides implementations of various validation strategies, which can be executed in parallel across multiple computing cores, processors, and nodes. Additionally, ML-Flex supports aggregating evidence across multiple algorithms and data sets via ensemble learning. (See http://jmlr.csail.mit.edu/papers/volume13/piccolo12a/piccolo12a.pdf.) Changes:Initial Announcement on mloss.org.
|
About: This package is a set of Matlab scripts that implements the algorithms described in the submitted paper: "Lp-Lq Sparse Linear and Sparse Multiple Kernel MultiTask Learning". Changes:Initial Announcement on mloss.org.
|
About: mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL. Changes:New features:
Fix:
|
About: Matlab SVM toolbox for learning large margin filters in signal or images. Changes:Initial Announcement on mloss.org.
|
About: MATLAB toolbox for advanced Brain-Computer Interface (BCI) research. Changes:Initial Announcement on mloss.org.
|
About: The Kernel-Machine Library is a free (released under the LGPL) C++ library to promote the use of and progress of kernel machines. Changes:Updated mloss entry (minor fixes).
|
About: Python module to ease pattern classification analyses of large datasets. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, [...] Changes:
This release aggregates all the changes occurred between official
releases in 0.4 series and various snapshot releases (in 0.5 and 0.6
series). To get better overview of high level changes see
:ref:
Also adapts changes from 0.4.6 and 0.4.7 (see corresponding changelogs).
This is a special release, because it has never seen the general public.
A summary of fundamental changes introduced in this development version
can be seen in the :ref: Most notably, this version was to first to come with a comprehensive two-day workshop/tutorial.
A bugfix release
A bugfix release
|
About: The original Random Forests implementation by Breiman and Cutler. Changes:Initial Announcement on mloss.org.
|
About: C5.0 is the successor of the C4.5 decision tree algorithm/tool. In particular, it is faster and more memory-efficient. Changes:Initial Announcement on mloss.org.
|
About: Matlab implementation of variational gaussian approximate inference for Bayesian Generalized Linear Models. Changes:Code restructure and bug fix.
|
About: Pyriel is a Python system for learning classification rules from data. Unlike other rule learning systems, it is designed to learn rule lists that maximize the area under the ROC curve (AUC) instead of accuracy. Pyriel is mostly an experimental research tool, but it's robust and fast enough to be used for lightweight industrial data mining. Changes:1.5 Changed CF (confidence factor) to do LaPlace smoothing of estimates. New flag "--score-for-class C" causes scores to be computed relative to a given (positive) class. For two-class problems. Fixed bug in example sampling code (--sample n) Fixed bug keeping old-style example formats (terminated by dot) from working. More code restructuring.
|
About: KeplerWeka represents the integration of all the functionality of the WEKA Machine Learning Workbench into the open-source scientific workflow Kepler. Among them are classification, [...] Changes:
|
About: OpenViBE is an opensource platform that enables to design, test and use Brain-Computer Interfaces (BCI). Broadly speaking, OpenViBE can be used in many real-time Neuroscience applications [...] Changes:New release 0.8.0.
|
About: PSVM - Support vector classification, regression and feature extraction for non-square dyadic data, non-Mercer kernels. Changes:Initial Announcement on mloss.org.
|
About: Implementation of LSTM for biological sequence analysis (classification, regression, motif discovery, remote homology detection). Additionally a LSTM as logistic regression with spectrum kernel is included. Changes:Spectrum LSTM package included
|
About: The library implements Optimized Cutting Plane Algorithm (OCAS) for efficient training of linear SVM classifiers from large-scale data. Changes:Implemented COFFIN framework which allows efficient training of invariant image classifiers via virtual examples.
|
About: This software is designed for learning translation invariant kernels for classification with support vector machines. Changes:Initial Announcement on mloss.org.
|
About: LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC ), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class [...] Changes:Initial Announcement on mloss.org.
|
About: The JINSECT toolkit is a Java-based toolkit and library that supports and demonstrates the use of n-gram graphs within Natural Language Processing applications, ranging from summarization and summary evaluation to text classi?cation and indexing. Changes:
|