About: Simple and hopefully clean and easy to follow implementation of the Generalized Learning Vector Quantizer (GLVQ) with variants for metric adaptation (RGLVQ, GMLVQ, LiRaM). Changes:Initial Announcement on mloss.org.
|
About: Jmlp is a java platform for both of the machine learning experiments and application. I have tested it on the window platform. But it should be applicable in the linux platform due to the cross-platform of Java language. It contains the classical classification algorithm (Discrete AdaBoost.MH, Real AdaBoost.MH, SVM, KNN, MCE,MLP,NB) and feature reduction(KPCA,PCA,Whiten) etc. Changes:Initial Announcement on mloss.org.
|
About: Hivemall is a scalable machine learning library running on Hive/Hadoop. Changes:
|
About: Mulan is an open-source Java library for learning from multi-label datasets. Multi-label datasets consist of training examples of a target function that has multiple binary target variables. This means that each item of a multi-label dataset can be a member of multiple categories or annotated by many labels (classes). This is actually the nature of many real world problems such as semantic annotation of images and video, web page categorization, direct marketing, functional genomics and music categorization into genres and emotions. Changes:Learners
Measures/Evaluation
Bug fixes
API changes
Miscalleneous
|
About: Hubness-aware Machine Learning for High-dimensional Data Changes:
|
About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning. Changes:Changelog pyGPs v1.3.2December 15th 2014
|
About: pySPACE is the abbreviation for "Signal Processing and Classification Environment in Python using YAML and supporting parallelization". It is a modular software for processing of large data streams that has been specifically designed to enable distributed execution and empirical evaluation of signal processing chains. Various signal processing algorithms (so called nodes) are available within the software, from finite impulse response filters over data-dependent spatial filters (e.g. CSP, xDAWN) to established classifiers (e.g. SVM, LDA). pySPACE incorporates the concept of node and node chains of the MDP framework. Due to its modular architecture, the software can easily be extended with new processing nodes and more general operations. Large scale empirical investigations can be configured using simple text- configuration files in the YAML format, executed on different (distributed) computing modalities, and evaluated using an interactive graphical user interface. Changes:improved testing, improved documentation, windows compatibility, more algorithms
|
About: A MATLAB toolkit for performing generalized regression with equality/inequality constraints on the function value/gradient. Changes:Initial Announcement on mloss.org.
|
About: Boosting algorithms for classification and regression, with many variations. Features include: Scalable and robust; Easily customizable loss functions; One-shot training for an entire regularization path; Continuous checkpointing; much more Changes:
|
About: Script-friendly command-line tools for machine learning and data mining tasks. (The command-line tools wrap functionality from a public domain C++ class library.) Changes:Added support for CUDA GPU-parallelized neural network layers, and several other new features. Full list of changes at http://waffles.sourceforge.net/docs/changelog.html
|
About: This package is an implementation of a linear RankSVM solver with non-convex regularization. Changes:Initial Announcement on mloss.org.
|
About: Massive Online Analysis (MOA) is a real time analytic tool for data streams. It is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and it is released under the GNU GPL license. Changes:New version November 2013
|
About: The EnsembleSVM library offers functionality to perform ensemble learning using Support Vector Machine (SVM) base models. In particular, we offer routines for binary ensemble models using SVM base classifiers. Experimental results have shown the predictive performance to be comparable with standard SVM models but with drastically reduced training time. Ensemble learning with SVM models is particularly useful for semi-supervised tasks. Changes:The library has been updated and features a variety of new functionality as well as more efficient implementations of original features. The following key improvements have been made:
The API and ABI have undergone significant changes, many of which are due to the transition to C++11.
|
About: Automatic Analysis of Malware Behavior using Machine Learning Changes:Support for new version of libarchive. Minor bug fixes.
|
About: The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library that has been specifically designed for real-time gesture recognition. It features a large number of machine-learning algorithms for both classification and regression in addition to a wide range of supporting algorithms for pre-processing, feature extraction and dataset management. The GRT has been designed for real-time gesture recognition, but it can also be applied to more general machine-learning tasks. Changes:Added Decision Tree and Random Forests.
|
About: LIBOL is an open-source library with a family of state-of-the-art online learning algorithms for machine learning and big data analytics research. The current version supports 16 online algorithms for binary classification and 13 online algorithms for multiclass classification. Changes:In contrast to our last version (V0.2.3), the new version (V0.3.0) has made some important changes as follows: • Add a template and guide for adding new algorithms; • Improve parameter settings and make documentation clear; • Improve documentation on data formats and key functions; • Amend the "OGD" function to use different loss types; • Fixed some name inconsistency and other minor bugs.
|
About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning. Changes:New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)
|
About: Orange is a component-based machine learning and data mining software. It includes a friendly yet powerful and flexible graphical user interface for visual programming. For more advanced use(r)s, [...] Changes:The core of the system (except the GUI) no longer includes any GPL code and can be licensed under the terms of BSD upon request. The graphical part remains under GPL. Changed the BibTeX reference to the paper recently published in JMLR MLOSS.
|
About: The UniverSVM is a SVM implementation written in C/C++. Its functionality comprises large scale transduction via CCCP optimization, sparse solutions via CCCP optimization and data-dependent [...] Changes:Minor changes: fix bug on set_alphas_b0 function (thanks to Ferdinand Kaiser - ferdinand.kaiser@tut.fi)
|