Projects that are tagged with multi label.


Logo scikit multilearn 0.0.5

by niedakh - February 25, 2017, 03:51:59 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 20389 views, 4415 downloads, 0 subscriptions

About: A native Python, scikit-compatible, implementation of a variety of multi-label classification algorithms.

Changes:
  • a general matrix-based label space clusterer has been added which can cluster the output space using any scikit-learn compatible clusterer (incl. k-means)
  • support for more single-class and multi-class classifiers you can now use problem transformation approaches with your favourite neural networks/deep learning libraries: theano, tensorflow, keras, scikit-neuralnetworks
  • support for label powerset based stratified kfold added
  • graph-tool clusterer supports weighted graphs again and includes stochastic blockmodel calibration
  • bugs were fixed in: classifier chains and hierarchical neuro fuzzy clasifiers

Logo JMLR Mulan 1.5.0

by lefman - February 23, 2015, 21:19:05 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 60523 views, 16243 downloads, 0 subscriptions

About: Mulan is an open-source Java library for learning from multi-label datasets. Multi-label datasets consist of training examples of a target function that has multiple binary target variables. This means that each item of a multi-label dataset can be a member of multiple categories or annotated by many labels (classes). This is actually the nature of many real world problems such as semantic annotation of images and video, web page categorization, direct marketing, functional genomics and music categorization into genres and emotions.

Changes:

Learners

  • MLCSSP.java: Added the MLCSSP algorithm (from ICML 2013)
  • Enhancements of multi-target regression capabilities
  • Improved CLUS support
  • Added pairwise classifier and pairwise transformation

Measures/Evaluation

  • Providing training data in the Evaluator is unnecessary in the case of specific measures.
  • Examples with missing ground truth are not skipped for measures that handle missing values.
  • Added logistics and squared error losses and measures

Bug fixes

  • IndexOutOfBounds in calculation of MiAP and GMiAP
  • Bug fix in Rcut.java
  • When in rank/score mode the meta-data contained additional unecessary attributes. (Newton Spolaor)

API changes

  • Upgrade to Java 7
  • Upgrade to Weka 3.7.10

Miscalleneous

  • Small changes and improvements in the wrapper classes for the CLUS library
  • ENTCS13FeatureSelection.java (new experiment)
  • Enumeration is now used for specifying the type of meta-data. (Newton Spolaor)