About: Libcmaes is a multithreaded C++11 library (with Python bindings) for high performance blackbox stochastic optimization of difficult, possibly non-linear and non-convex functions, using the CMA-ES algorithm for Covariance Matrix Adaptation Evolution Strategy. Libcmaes is useful to minimize / maximize any function, without information regarding gradient or derivability. Changes:This is a major release, with several novelties, improvements and fixes, among which:
|
About: CN24 is a complete semantic segmentation framework using fully convolutional networks. Changes:Initial Announcement on mloss.org.
|
About: The DL-Learner framework contains several algorithms for supervised concept learning in Description Logics (DLs) and OWL. Changes:See http://dl-learner.org/development/changelog/.
|
About: The auto-encoder based data clustering toolkit provides a quick start of clustering based on deep auto-encoder nets. This toolkit can cluster data in feature space with a deep nonlinear nets. Changes:Initial Announcement on mloss.org.
|
About: This is an exact implementation of Histogram of Oriented Gradient as mentioned in the paper by Dalal. Changes:Initial Announcement on mloss.org.
|
About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line. Changes:This release features the work of our 8 GSoC 2014 students [student; mentors]:
It also contains several cleanups and bugfixes: Features
Bugfixes
Cleanup and API Changes
|
About: Distributed optimization: Support Vector Machines and LASSO regression on distributed data Changes:Initial Upload
|
About: The fertilized forests project has the aim to provide an easy to use, easy to extend, yet fast library for decision forests. It summarizes the research in this field and provides a solid platform to extend it. Offering consistent interfaces to C++, Python and Matlab and being available for all major compilers gives the user high flexibility for using the library. Changes:Initial Announcement on mloss.org.
|
About: Hubness-aware Machine Learning for High-dimensional Data Changes:
|
About: A template based C++ reinforcement learning library Changes:Initial Announcement on mloss.org.
|
About: C++ generic programming tools for machine learning Changes:Initial Announcement on mloss.org.
|
About: Java package for calculating Entropy for Machine Learning Applications. It has implemented several methods of handling missing values. So it can be used as a lab for examining missing values. Changes:Discretizing numerical values is added to calculate mode of values and fractional replacement of missing ones. class diagram is on the web http://profs.basu.ac.ir/bathaeian/free_space/jemla.rar
|
About: a parallel LDA learning toolbox in Multi-Core Systems for big topic modeling. Changes:Initial Announcement on mloss.org.
|
About: Gaussian processes with general nonlinear likelihoods using the unscented transform or Taylor series linearisation. Changes:Initial Announcement on mloss.org.
|
About: This library implements the Optimum-Path Forest classifier for unsupervised and supervised learning. Changes:Initial Announcement on mloss.org.
|
About: pySPACE is the abbreviation for "Signal Processing and Classification Environment in Python using YAML and supporting parallelization". It is a modular software for processing of large data streams that has been specifically designed to enable distributed execution and empirical evaluation of signal processing chains. Various signal processing algorithms (so called nodes) are available within the software, from finite impulse response filters over data-dependent spatial filters (e.g. CSP, xDAWN) to established classifiers (e.g. SVM, LDA). pySPACE incorporates the concept of node and node chains of the MDP framework. Due to its modular architecture, the software can easily be extended with new processing nodes and more general operations. Large scale empirical investigations can be configured using simple text- configuration files in the YAML format, executed on different (distributed) computing modalities, and evaluated using an interactive graphical user interface. Changes:improved testing, improved documentation, windows compatibility, more algorithms
|
About: The implementation of adaptive probabilistic mappings. Changes:Initial Announcement on mloss.org.
|
About: Boosting algorithms for classification and regression, with many variations. Features include: Scalable and robust; Easily customizable loss functions; One-shot training for an entire regularization path; Continuous checkpointing; much more Changes:
|
About: Script-friendly command-line tools for machine learning and data mining tasks. (The command-line tools wrap functionality from a public domain C++ class library.) Changes:Added support for CUDA GPU-parallelized neural network layers, and several other new features. Full list of changes at http://waffles.sourceforge.net/docs/changelog.html
|
About: ARTOS can be used to quickly learn models for visual object detection without having to collect a set of samples manually. To make this possible, it uses ImageNet, a large image database with more than 20,000 categories. Changes:Initial Announcement on mloss.org.
|