About: The Accord.NET Framework is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications even for commercial use. A comprehensive set of sample applications provide a fast start to get up and running quickly, and an extensive online documentation helps fill in the details. Changes:For a complete list of changes, please see the full release notes at the release details page at: https://github.com/accord-net/framework/releases/tag/v3.8.0
|
About: The bufferkdtree package is a Python library that aims at accelerating nearest neighbor computations using both k-d trees and modern many-core devices such as graphics processing units (GPUs). Changes:Initial Announcement on mloss.org.
|
About: A Java framework for statistical analysis and classification of biological sequences Changes:New classes and packages:
New features and improvements:
|
About: A non-iterative, incremental and hyperparameter-free learning method for one-layer feedforward neural networks without hidden layers. This method efficiently obtains the optimal parameters of the network, regardless of whether the data contains a greater number of samples than variables or vice versa. It does this by using a square loss function that measures errors before the output activation functions and scales them by the slope of these functions at each data point. The outcome is a system of linear equations that obtain the network's weights and that is further transformed using Singular Value Decomposition. Changes:Initial Announcement on mloss.org.
|
About: A non-iterative learning method for one-layer (no hidden layer) neural networks, where the weights can be calculated in a closed-form manner, thereby avoiding low convergence rate and also hyperparameter tuning. The proposed learning method, LANN-SVD in short, presents a good computational efficiency for large-scale data analytic. Changes:Initial Announcement on mloss.org.
|
About: An open-source framework for benchmarking of feature selection algorithms and cost functions. Changes:Initial Announcement on mloss.org.
|
About: Hyperstream is a large-scale, flexible and robust software package for processing streaming data. Changes:python 3 support; new API; bug fixes and enhancements
|
About: MSVMpack is a Multi-class Support Vector Machine (M-SVM) package. It is dedicated to SVMs which can handle more than two classes without relying on decomposition methods and implements the four M-SVM models from the literature: Weston and Watkins M-SVM, Crammer and Singer M-SVM, Lee, Lin and Wahba M-SVM, and the M-SVM2 of Guermeur and Monfrini. Changes:
|
About: OpenNN is a software library written in C++ for advanced analytics. It implements neural networks, the most successful machine learning method. The library has been designed to learn from both data sets and mathematical models. Changes:New algorithms, correction of bugs.
|
About: A mutual information library for C and Mex bindings for MATLAB. Aimed at feature selection, and provides simple methods to calculate mutual information, conditional mutual information, entropy, conditional entropy, Renyi entropy/mutual information, and weighted variants of Shannon entropies/mutual informations. Works with discrete distributions, and expects column vectors of features. Changes:Fixed a Windows compilation bug. MIToolbox v3 should now compile using Visual Studio.
|
About: The new R package opusminer provides an R interface to the OPUS Miner algorithm (implemented in C++) for finding the key associations in transaction data efficiently, in the form of self-sufficient itemsets, using either leverage or lift. Changes:Initial Announcement on mloss.org.
|
About: ADENINE (A Data ExploratioN pIpeliNE) is a machine learning framework for data exploration that encompasses state-of-the-art techniques for missing values imputing, data preprocessing, unsupervised feature learning and clustering tasks. Changes:
|
About: LogReg-Crowds is a collection of Julia implementations of various approaches for learning a logistic regression model multiple annotators and crowds, namely the works of Raykar et al. (2010), Rodrigues et al. (2013) and Dawid and Skene (1979). Changes:Initial Announcement on mloss.org. Added GitHub page.
|
About: MA-sLDAr is a C++ implementation of the supervised topic models with response variables provided by multiple annotators with different levels of expertise. Changes:Initial Announcement on mloss.org.
|
About: MA-sLDAc is a C++ implementation of the supervised topic models with labels provided by multiple annotators with different levels of expertise. Changes:Initial Announcement on mloss.org.
|
About: General purpose Java Machine Learning library for classification, regression, and clustering. Changes:See github release tab for change info
|
About: FEAST provides implementations of common mutual information based filter feature selection algorithms (mim, mifs, mrmr, cmim, icap, jmi, disr, fcbf, etc), and an implementation of RELIEF. Written for C/C++ & Matlab. Changes:Major refactoring of FEAST to improve speed and portability.
|
About: The scikit-learn project is a machine learning library in Python. Changes:Update for 0.18 .1
|
About: DIANNE is a modular software framework for designing, training and evaluating artificial neural networks on heterogeneous, distributed infrastructure . It is built on top of OSGi and AIOLOS and can transparently deploy and redeploy (parts of) a neural network on multiple machines, as well as scale up training on a compute cluster. Changes:Initial Announcement on mloss.org.
|