About: Log-linear analysis for high-dimensional data Changes:Initial Announcement on mloss.org.
|
About: Code for Calibrated AdaMEC for binary cost-sensitive classification. The method is just AdaBoost that properly calibrates its probability estimates and uses a cost-sensitive (i.e. risk-minimizing) decision threshold to classify new data. Changes:Updated license information
|
About: MALSS is a python module to facilitate machine learning tasks. Changes:Initial Announcement on mloss.org.
|
About: SALSA (Software lab for Advanced machine Learning with Stochastic Algorithms) is an implementation of the well-known stochastic algorithms for Machine Learning developed in the high-level technical computing language Julia. The SALSA software package is designed to address challenges in sparse linear modelling, linear and non-linear Support Vector Machines applied to large data samples with user-centric and user-friendly emphasis. Changes:Initial Announcement on mloss.org.
|
About: Text-to-Speech (TTS) is a kind of speech processing technology that converts text into speech. It involves phonetics, linguistics, digital signal processing technology, computer technology, multimedia technology, and other technologies. It is a frontier technology in Chinese information processing field. With TTS technology, any text used to be read by eyes can also be listened by ears. Changes:Initial Announcement on mloss.org.
|
About: This package includes implementations of the CCM, DMV and DMV+CCM parsers from Klein and Manning (2004), and code for testing them with the WSJ, Negra and Cast3LB corpuses (English, German and Spanish respectively). A detailed description of the parsers can be found in Klein (2005). Changes:Initial Announcement on mloss.org.
|
About: The toolbox from the paper Near-optimal Experimental Design for Model Selection in Systems Biology (Busetto et al. 2013, submitted) implemented in MATLAB. Changes:Initial Announcement on mloss.org.
|
About: Robust sparse representation has shown significant potential in solving challenging problems in computer vision such as biometrics and visual surveillance. Although several robust sparse models have been proposed and promising results have been obtained, they are either for error correction or for error detection, and learning a general framework that systematically unifies these two aspects and explore their relation is still an open problem. In this paper, we develop a half-quadratic (HQ) framework to solve the robust sparse representation problem. By defining different kinds of half-quadratic functions, the proposed HQ framework is applicable to performing both error correction and error detection. More specifically, by using the additive form of HQ, we propose an L1-regularized error correction method by iteratively recovering corrupted data from errors incurred by noises and outliers; by using the multiplicative form of HQ, we propose an L1-regularized error detection method by learning from uncorrupted data iteratively. We also show that the L1-regularization solved by soft-thresholding function has a dual relationship to Huber M-estimator, which theoretically guarantees the performance of robust sparse representation in terms of M-estimation. Experiments on robust face recognition under severe occlusion and corruption validate our framework and findings. Changes:Initial Announcement on mloss.org.
|
About: MIPS is a software library for state-of-the-art graph mining algorithms. The library is platform independent, written in C++(03), and aims at implementing generic and efficient graph mining algorithms. Changes:description update
|
About: Low-Rank and Sparse tools for Background Modeling and Subtraction in Videos. Changes:Initial Announcement on mloss.org.
|
About: MLPlot is a lightweight plotting library written in Java. Changes:Initial Announcement on mloss.org.
|
About: Tool aimed at helping remedy the reproducibility problem, specifically in the statistical and data wrangling aspects. Changes:Initial Announcement on mloss.org.
|
About: Hype is a proof-of-concept deep learning library, where you can perform optimization on compositional machine learning systems of many components, even when such components themselves internally perform optimization. Changes:Initial Announcement on mloss.org.
|
About: This provide a semi-supervised learning method based co-training for RGB-D object recognition. Besides, we evaluate four state-of-the-art feature learing method under the semi-supervised learning framework. Changes:Initial Announcement on mloss.org.
|
About: This evaluation toolkit provides a unified framework for evaluating bag-of-words based encoding methods over several standard image classification datasets. Changes:Initial Announcement on mloss.org.
|
About: An open-source Python toolbox to analyze mobile phone metadata. Changes:Initial Announcement on mloss.org.
|
About: Simple and hopefully clean and easy to follow implementation of the Generalized Learning Vector Quantizer (GLVQ) with variants for metric adaptation (RGLVQ, GMLVQ, LiRaM). Changes:Initial Announcement on mloss.org.
|
About: DIANNE is a modular software framework for designing, training and evaluating artificial neural networks on heterogeneous, distributed infrastructure . It is built on top of OSGi and AIOLOS and can transparently deploy and redeploy (parts of) a neural network on multiple machines, as well as scale up training on a compute cluster. Changes:Initial Announcement on mloss.org.
|
About: This program implements a novel robust sparse representation method, called the two-stage sparse representation (TSR), for robust recognition on a large-scale database. Based on the divide and conquer strategy, TSR divides the procedure of robust recognition into outlier detection stage and recognition stage. The extensive numerical experiments on several public databases demonstrate that the proposed TSR approach generally obtains better classification accuracy than the state-of-the-art Sparse Representation Classification (SRC). At the same time, by using the TSR, a significant reduction of computational cost is reached by over fifty times in comparison with the SRC, which enables the TSR to be deployed more suitably for large-scale dataset. Changes:Initial Announcement on mloss.org.
|