All entries.
Showing Items 581-600 of 676 on page 30 of 34: First Previous 25 26 27 28 29 30 31 32 33 34 Next

Logo SFPD 1

by zenog - September 21, 2011, 14:26:45 CET [ Project Homepage BibTeX Download ] 7990 views, 2142 downloads, 0 subscriptions

About: Survival forests: Random Forests variant for survival analysis. Original implementation by Leo Breiman.

Changes:

Initial Announcement on mloss.org.


Logo SGD 2.0

by leonbottou - October 11, 2011, 20:59:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 27584 views, 4594 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: The SGD-2.0 package contains implementations of the SGD and ASGD algorithms for linear SVMs and linear CRFs.

Changes:

Version 2.0 features ASGD.


Logo JMLR Shark 2.3.0

by igel - October 24, 2009, 22:12:48 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 52942 views, 10135 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 3 votes)

About: SHARK is a modular C++ library for the design and optimization of adaptive systems. It provides various machine learning and computational intelligence techniques.

Changes:
  • moved to GitHub
  • new build system
  • minor bug fixes

Logo JMLR SHOGUN 4.0.0

by sonne - February 5, 2015, 09:09:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 229173 views, 37938 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.

Changes:

This release features the work of our 8 GSoC 2014 students [student; mentors]:

  • OpenCV Integration and Computer Vision Applications [Abhijeet Kislay; Kevin Hughes]
  • Large-Scale Multi-Label Classification [Abinash Panda; Thoralf Klein]
  • Large-scale structured prediction with approximate inference [Jiaolong Xu; Shell Hu]
  • Essential Deep Learning Modules [Khaled Nasr; Sergey Lisitsyn, Theofanis Karaletsos]
  • Fundamental Machine Learning: decision trees, kernel density estimation [Parijat Mazumdar ; Fernando Iglesias]
  • Shogun Missionary & Shogun in Education [Saurabh Mahindre; Heiko Strathmann]
  • Testing and Measuring Variable Interactions With Kernels [Soumyajit De; Dino Sejdinovic, Heiko Strathmann]
  • Variational Learning for Gaussian Processes [Wu Lin; Heiko Strathmann, Emtiyaz Khan]

It also contains several cleanups and bugfixes:

Features

  • New Shogun project description [Heiko Strathmann]
  • ID3 algorithm for decision tree learning [Parijat Mazumdar]
  • New modes for PCA matrix factorizations: SVD & EVD, in-place or reallocating [Parijat Mazumdar]
  • Add Neural Networks with linear, logistic and softmax neurons [Khaled Nasr]
  • Add kernel multiclass strategy examples in multiclass notebook [Saurabh Mahindre]
  • Add decision trees notebook containing examples for ID3 algorithm [Parijat Mazumdar]
  • Add sudoku recognizer ipython notebook [Alejandro Hernandez]
  • Add in-place subsets on features, labels, and custom kernels [Heiko Strathmann]
  • Add Principal Component Analysis notebook [Abhijeet Kislay]
  • Add Multiple Kernel Learning notebook [Saurabh Mahindre]
  • Add Multi-Label classes to enable Multi-Label classification [Thoralf Klein]
  • Add rectified linear neurons, dropout and max-norm regularization to neural networks [Khaled Nasr]
  • Add C4.5 algorithm for multiclass classification using decision trees [Parijat Mazumdar]
  • Add support for arbitrary acyclic graph-structured neural networks [Khaled Nasr]
  • Add CART algorithm for classification and regression using decision trees [Parijat Mazumdar]
  • Add CHAID algorithm for multiclass classification and regression using decision trees [Parijat Mazumdar]
  • Add Convolutional Neural Networks [Khaled Nasr]
  • Add Random Forests algorithm for ensemble learning using CART [Parijat Mazumdar]
  • Add Restricted Botlzmann Machines [Khaled Nasr]
  • Add Stochastic Gradient Boosting algorithm for ensemble learning [Parijat Mazumdar]
  • Add Deep contractive and denoising autoencoders [Khaled Nasr]
  • Add Deep belief networks [Khaled Nasr]

Bugfixes

  • Fix reference counting bugs in CList when reference counting is on [Heiko Strathmann, Thoralf Klein, lambday]
  • Fix memory problem in PCA::apply_to_feature_matrix [Parijat Mazumdar]
  • Fix crash in LeastAngleRegression for the case D greater than N [Parijat Mazumdar]
  • Fix memory violations in bundle method solvers [Thoralf Klein]
  • Fix fail in library_mldatahdf5.cpp example when http://mldata.org is not working properly [Parijat Mazumdar]
  • Fix memory leaks in Vowpal Wabbit, LibSVMFile and KernelPCA [Thoralf Klein]
  • Fix memory and control flow issues discovered by Coverity [Thoralf Klein]
  • Fix R modular interface SWIG typemap (Requires SWIG >= 2.0.5) [Matt Huska]

Cleanup and API Changes

  • PCA now depends on Eigen3 instead of LAPACK [Parijat Mazumdar]
  • Removing redundant and fixing implicit imports [Thoralf Klein]
  • Hide many methods from SWIG, reducing compile memory by 500MiB [Heiko Strathmann, Fernando Iglesias, Thoralf Klein]

Logo SIFT Extractor 1.0.0

by openpr_nlpr - December 2, 2011, 05:18:35 CET [ Project Homepage BibTeX Download ] 6608 views, 1960 downloads, 0 subscriptions

About: This program is used to extract SIFT points from an image.

Changes:

Initial Announcement on mloss.org.


Logo Simple Generalized Learning Vector Quantization 1.0

by fmschleif - June 4, 2015, 10:49:49 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 9047 views, 2028 downloads, 0 subscriptions

About: Simple and hopefully clean and easy to follow implementation of the Generalized Learning Vector Quantizer (GLVQ) with variants for metric adaptation (RGLVQ, GMLVQ, LiRaM).

Changes:

Initial Announcement on mloss.org.


Logo SimpleMKL 0.5

by arakotom - June 11, 2008, 00:56:47 CET [ Project Homepage BibTeX Download ] 20927 views, 5558 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: Matlab Multiple Kernel Learning toolbox. Features : MKL for SVM Classification, Regression and MultiClass. It needs SVM-KM Toolbox

Changes:

Initial Announcement on mloss.org.


Logo SimpleSVM 2.99

by gaelle - November 15, 2007, 16:59:45 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18261 views, 3692 downloads, 0 subscriptions

About: The SimpleSVM toolbox contains the svm solver of the same name. The current version includes C-SVM, HM-SVM and nu-SVM based on the regularization path. It will soon include OC-SVM, regularization [...]

Changes:

Initial Announcement on mloss.org.


Logo SketchSort 0.0.6

by ytabei - October 11, 2010, 18:33:21 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 11054 views, 2261 downloads, 0 subscriptions

About: A Sortware for All Pairs Similarity Search

Changes:

Initial Announcement on mloss.org.


Logo SkyVoice TTS and SDK 1.0

by openpr_nlpr - September 10, 2012, 03:48:47 CET [ Project Homepage BibTeX Download ] 8203 views, 2101 downloads, 0 subscriptions

About: Text-to-Speech (TTS) is a kind of speech processing technology that converts text into speech. It involves phonetics, linguistics, digital signal processing technology, computer technology, multimedia technology, and other technologies. It is a frontier technology in Chinese information processing field. With TTS technology, any text used to be read by eyes can also be listened by ears.

Changes:

Initial Announcement on mloss.org.


Logo Sleipnir 1.0

by chuttenh - June 30, 2008, 03:22:19 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14367 views, 3291 downloads, 0 subscriptions

About: The Sleipnir C++ library implements a variety of machine learning and data manipulation algorithms focusing on heterogeneous data integration and efficiency for large biological data collections.

Changes:

Initial Announcement on mloss.org.


Logo slim for matlab 0.2

by ustunb - August 23, 2016, 20:27:00 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 10600 views, 2621 downloads, 0 subscriptions

About: learn optimized scoring systems using MATLAB and the CPLEX Optimization Studio

Changes:

Initial Announcement on mloss.org.


Logo SMIDAS 1.1

by ambujtewari - August 15, 2010, 18:51:51 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 21521 views, 4245 downloads, 0 subscriptions

About: A stochastic variant of the mirror descent algorithm employing Langford and Zhang's truncated gradient idea to minimize L1 regularized loss minimization problems for classification and regression.

Changes:

Fixed major bug in implementation. The components of the iterate where the current example vector is zero were not being updated correctly. Thanks to Jonathan Chang for pointing out the error to us.


Logo SMPyBandits 0.9.2

by Naereen - March 20, 2018, 20:12:13 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 21300 views, 3086 downloads, 0 subscriptions

About: SMPyBandits: an Open-Source Research Framework for Single and Multi-Players Multi-Arms Bandits (MAB) Algorithms in Python

Changes:

Initial Announcement on mloss.org.


Logo SnOB beta

by risi - October 5, 2008, 21:39:18 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 12069 views, 2553 downloads, 0 subscriptions

About: SnOB is a C++ library implementing fast Fourier transforms on the symmetric group (group of permutations). Such Fourier transforms are used by some ranking and identity management algorithms, as [...]

Changes:

Initial Announcement on mloss.org.


Logo Social Impact theory based Optimizer library 1.1

by rishem - July 29, 2016, 13:19:47 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 30417 views, 6753 downloads, 0 subscriptions

About: This is an optimization library based on Social Impact Theory(SITO). The optimizer works in the same way as PSO and GA.

Changes:

bug removed


Logo sofia ml 0.1

by dsculley - December 29, 2009, 23:30:58 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14913 views, 2717 downloads, 0 comments, 0 subscriptions

About: A fast implementation of several stochastic gradient descent learners for classification, ranking, and ROC area optimization, suitable for large, sparse data sets. Includes Pegasos SVM, SGD-SVM, Passive-Aggressive Perceptron, Perceptron with Margins, Logistic Regression, and ROMMA. Commandline utility and API libraries are provided.

Changes:

Initial Announcement on mloss.org.


Logo Some essential Matlab extensions 1.0

by mseeger - November 10, 2007, 22:15:31 CET [ Project Homepage BibTeX Download ] 10099 views, 2825 downloads, 0 comments, 0 subscriptions

About: This is a set of MATLAB(R) functions and MEX files which I wrote to make working with this system somewhat bearable. They allow to call BLAS and LAPACK functions, which do very efficient dense [...]

Changes:

Initial Announcement on mloss.org.


Logo Somoclu 1.7.5

by peterwittek - March 1, 2018, 23:30:34 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 106808 views, 19944 downloads, 0 subscriptions

About: Somoclu is a massively parallel implementation of self-organizing maps. It relies on OpenMP for multicore execution, MPI for distributing the workload, and it can be accelerated by CUDA on a GPU cluster. A sparse kernel is also included, which is useful for training maps on vector spaces generated in text mining processes. Apart from a command line interface, Python, Julia, R, and MATLAB are supported.

Changes:
  • New: A Makefile for mingw to build on Windows.
  • Changed: PR #94 added a much more efficient sparse kernel.
  • Changed: boilerplate code for Julia greatly improved.
  • Changed: Code cleanup, pre-processor macros simplified.
  • Changed: Adapted to Seaborn API changes in plotting heatmaps.

Logo SonS and MDSonS, Software for hierarchical clustering visualization V1

by marmarj3 - June 18, 2013, 12:18:05 CET [ Project Homepage BibTeX Download ] 7886 views, 2311 downloads, 0 subscriptions

About: This toolbox implements a novel visualization technique called Sectors on Sectors (SonS), and a extended version called Multidimensional Sectors on Sectors (MDSonS), for improving the interpretation of several data mining algorithms. The MDSonS method makes use of Multidimensional Scaling (MDS) to solve the main drawback of the previous method, namely, the lack of representing distances between pairs of clusters. These methods have been applied for visualizing the results of hierarchical clustering, Growing Hierarchical Self-Organizing Maps (GHSOM), classification trees and several manifolds. These methods make possible to extract all the existing relationships among centroids’ attributes at any hierarchy level.

Changes:

Initial Announcement on mloss.org.


Showing Items 581-600 of 676 on page 30 of 34: First Previous 25 26 27 28 29 30 31 32 33 34 Next