Projects that are tagged with online learning.
Showing Items 1-20 of 28 on page 1 of 2: 1 2 Next

Logo KeLP 2.2.2

by kelpadmin - February 1, 2018, 00:57:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 49458 views, 12158 downloads, 0 subscriptions

About: Kernel-based Learning Platform (KeLP) is Java framework that supports the implementation of kernel-based learning algorithms, as well as an agile definition of kernel functions over generic data representation, e.g. vectorial data or discrete structures. The framework has been designed to decouple kernel functions and learning algorithms, through the definition of specific interfaces. Once a new kernel function has been implemented, it can be automatically adopted in all the available kernel-machine algorithms. KeLP includes different Online and Batch Learning algorithms for Classification, Regression and Clustering, as well as several Kernel functions, ranging from vector-based to structural kernels. It allows to build complex kernel machine based systems, leveraging on JSON/XML interfaces to instantiate prediction models without writing a single line of code.

Changes:

In addition to minor improvements and bug fixes, this release includes:

  • The possibility to generate the Compositional GRCT and the Compositional LCT data structures in kelp-input-generator.

  • New metrics for evaluating Classification Tasks.

  • New Tutorial and Unit Tests.

Check out this new version from our repositories. API Javadoc is already available. Your suggestions will be very precious for us, so download and try KeLP 2.2.2!


Logo Obandit 0.2

by fre - November 6, 2017, 14:33:02 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4970 views, 1065 downloads, 0 subscriptions

About: Obandit is an Ocaml module for multi-armed bandits. It supports the EXP, UCB and Epsilon-greedy family of algorithms.

Changes:

Initial Announcement on mloss.org.


Logo Kernel Adaptive Filtering Toolbox 2.0

by steven2358 - May 22, 2017, 10:05:33 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 25909 views, 4215 downloads, 0 subscriptions

About: A Matlab benchmarking toolbox for online and adaptive regression with kernels.

Changes:
  • Changes in algorithms' Matlab class format
  • New algorithms
  • Minor improvements and bug fixes

Logo Java Statistical Analysis Tool 0.0.7

by EdwardRaff - January 15, 2017, 22:21:50 CET [ Project Homepage BibTeX Download ] 11016 views, 2908 downloads, 0 subscriptions

About: General purpose Java Machine Learning library for classification, regression, and clustering.

Changes:

See github release tab for change info


Logo SALSA.jl 0.0.5

by jumutc - September 28, 2015, 17:28:56 CET [ Project Homepage BibTeX Download ] 6141 views, 1399 downloads, 0 subscriptions

About: SALSA (Software lab for Advanced machine Learning with Stochastic Algorithms) is an implementation of the well-known stochastic algorithms for Machine Learning developed in the high-level technical computing language Julia. The SALSA software package is designed to address challenges in sparse linear modelling, linear and non-linear Support Vector Machines applied to large data samples with user-centric and user-friendly emphasis.

Changes:

Initial Announcement on mloss.org.


Logo ABACOC Adaptive Ball Cover for Classification 2.0

by kikot - May 29, 2015, 11:57:28 CET [ BibTeX BibTeX for corresponding Paper Download ] 13025 views, 3113 downloads, 0 subscriptions

About: Incremental (Online) Nonparametric Classifier. You can classify both points (standard) or matrices (multivariate time series). Java and Matlab code already available.

Changes:

version 2: parameterless system, constant model size, prediction confidence (for active learning).

NEW!! C++ version at: https://github.com/ilaria-gori/ABACOC


Logo Hivemall 0.3

by myui - March 13, 2015, 17:08:22 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 25905 views, 5188 downloads, 0 subscriptions

About: Hivemall is a scalable machine learning library running on Hive/Hadoop.

Changes:
  • Supported Matrix Factorization
  • Added a support for TF-IDF computation
  • Supported AdaGrad/AdaDelta
  • Supported AdaGradRDA classification
  • Added normalization scheme

Logo QSMM 1.16

by olegvol - July 29, 2014, 19:37:31 CET [ Project Homepage BibTeX Download ] 5954 views, 1536 downloads, 0 subscriptions

About: The implementation of adaptive probabilistic mappings.

Changes:

Initial Announcement on mloss.org.


Logo JMLR MOA Massive Online Analysis Nov-13

by abifet - April 4, 2014, 03:50:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 32227 views, 9343 downloads, 0 subscriptions

About: Massive Online Analysis (MOA) is a real time analytic tool for data streams. It is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and it is released under the GNU GPL license.

Changes:

New version November 2013


Logo LIBOL 0.3.0

by stevenhoi - December 12, 2013, 15:26:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 35822 views, 11725 downloads, 0 subscriptions

About: LIBOL is an open-source library with a family of state-of-the-art online learning algorithms for machine learning and big data analytics research. The current version supports 16 online algorithms for binary classification and 13 online algorithms for multiclass classification.

Changes:

In contrast to our last version (V0.2.3), the new version (V0.3.0) has made some important changes as follows:

• Add a template and guide for adding new algorithms;

• Improve parameter settings and make documentation clear;

• Improve documentation on data formats and key functions;

• Amend the "OGD" function to use different loss types;

• Fixed some name inconsistency and other minor bugs.


Logo Jubatus 0.5.0

by hido - November 30, 2013, 17:41:50 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 13376 views, 2327 downloads, 0 subscriptions

About: Jubatus is a general framework library for online and distributed machine learning. It currently supports classification, regression, clustering, recommendation, nearest neighbors, anomaly detection, and graph analysis. Loose model sharing provides higher scalability, better performance, and real-time capabilities, by combining online learning with distributed computations.

Changes:

0.5.0 add new supports for clustering and nearest neighbors. For more detail, see http://t.co/flMcTcYZVs


Logo pymaBandits 1.0

by garivier - July 6, 2012, 18:32:41 CET [ BibTeX Download ] 26133 views, 4571 downloads, 0 subscriptions

About: This package contains a python and a matlab implementation of the most widely used algorithms for multi-armed bandit problems. The purpose of this package is to provide simple environments for comparison and numerical evaluation of policies.

Changes:

Initial Announcement on mloss.org.


Logo JMLR LWPR 1.2.4

by sklanke - February 6, 2012, 19:55:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 54722 views, 6969 downloads, 0 subscriptions

About: Locally Weighted Projection Regression (LWPR) is a recent algorithm that achieves nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its [...]

Changes:

Version 1.2.4

  • Corrected typo in lwpr.c (wrong function name for multi-threaded helper function on Unix systems) Thanks to Jose Luis Rivero

Logo OpenViBE 0.8.0

by k3rl0u4rn - October 1, 2010, 16:15:08 CET [ Project Homepage BibTeX Download ] 23730 views, 5965 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 1 vote)

About: OpenViBE is an opensource platform that enables to design, test and use Brain-Computer Interfaces (BCI). Broadly speaking, OpenViBE can be used in many real-time Neuroscience applications [...]

Changes:

New release 0.8.0.


Logo sofia ml 0.1

by dsculley - December 29, 2009, 23:30:58 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 12327 views, 2140 downloads, 0 comments, 0 subscriptions

About: A fast implementation of several stochastic gradient descent learners for classification, ranking, and ROC area optimization, suitable for large, sparse data sets. Includes Pegasos SVM, SGD-SVM, Passive-Aggressive Perceptron, Perceptron with Margins, Logistic Regression, and ROMMA. Commandline utility and API libraries are provided.

Changes:

Initial Announcement on mloss.org.


Logo Elefant 0.4

by kishorg - October 17, 2009, 08:48:19 CET [ Project Homepage BibTeX Download ] 31828 views, 10577 downloads, 0 subscriptions

Rating Whole StarWhole Star1/2 StarEmpty StarEmpty Star
(based on 2 votes)

About: Elefant is an open source software platform for the Machine Learning community licensed under the Mozilla Public License (MPL) and developed using Python, C, and C++. We aim to make it the platform [...]

Changes:

This release contains the Stream module as a first step in the direction of providing C++ library support. Stream aims to be a software framework for the implementation of large scale online learning algorithms. Large scale, in this context, should be understood as something that does not fit in the memory of a standard desktop computer.

Added Bundle Methods for Regularized Risk Minimization (BMRM) allowing to choose from a list of loss functions and solvers (linear and quadratic).

Added the following loss classes: BinaryClassificationLoss, HingeLoss, SquaredHingeLoss, ExponentialLoss, LogisticLoss, NoveltyLoss, LeastMeanSquareLoss, LeastAbsoluteDeviationLoss, QuantileRegressionLoss, EpsilonInsensitiveLoss, HuberRobustLoss, PoissonRegressionLoss, MultiClassLoss, WinnerTakesAllMultiClassLoss, ScaledSoftMarginMultiClassLoss, SoftmaxMultiClassLoss, MultivariateRegressionLoss

Graphical User Interface provides now extensive documentation for each component explaining state variables and port descriptions.

Changed saving and loading of experiments to XML (thereby avoiding storage of large input data structures).

Unified automatic input checking via new static typing extending Python properties.

Full support for recursive composition of larger components containing arbitrary statically typed state variables.


Logo Online Random Forests 0.11

by amirsaffari - October 3, 2009, 17:25:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18827 views, 3466 downloads, 0 subscriptions

About: This package implements the “Online Random Forests” (ORF) algorithm of Saffari et al., ICCV-OLCV 2009. This algorithm extends the offline Random Forests (RF) to learn from online training data samples. ORF is a multi-class classifier which is able to learn the classifier without 1-vs-all or 1-vs-1 binary decompositions.

Changes:

Initial Announcement on mloss.org.


Logo LASVM 1.1

by leonbottou - August 3, 2009, 15:50:30 CET [ Project Homepage BibTeX Download ] 18346 views, 3563 downloads, 0 subscriptions

About: Reference implementation of the LASVM online and active SVM algorithms as described in the JMLR paper. The interesting bit is a small C library that implements the LASVM process and reprocess [...]

Changes:

Minor bug fix


Logo Debellor 1.0

by mwojnars - July 30, 2009, 16:48:05 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 17269 views, 3811 downloads, 0 subscriptions

About: Debellor is a scalable and extensible platform which provides common architecture for data mining and machine learning algorithms of various types.

Changes:
  • Naming of numerous classes/methods/fields changed to be more accurate and comprehensible
  • Weka and Rseslib libraries updated to the newest versions: Weka 3.6.1 & Rseslib 3.0.1. Debellor's wrappers adapted
  • New class: CrossValidation - evaluator of trainable cells through cross-validation
  • New class: RMSE - calculation of Root Mean Squared Error score
  • Data objects can be compared and used in collections
  • ArffReader can read from a user-provided java.io.InputStream
  • More convenient use of parameters (setting values)
  • More convenient use of data objects and data types (construction, type casting)
  • Other minor improvements to existing classes
  • Javadoc extended

Logo OLaRankGreedy 1.0

by antojne - June 24, 2009, 17:07:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 10073 views, 2114 downloads, 0 subscriptions

About: OLaRankGreedy is an online solver of the dual formulation of support vector machines for sequence labeling using greedy inference.

Changes:

Initial Announcement on mloss.org.


Showing Items 1-20 of 28 on page 1 of 2: 1 2 Next