Projects that are tagged with gaussian processes.


Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 4.1

by hn - November 27, 2017, 19:26:13 CET [ Project Homepage BibTeX Download ] 90244 views, 20241 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models.

Changes:

Logdet-estimation functionality for grid-based approximate covariances

  • Lanczos subspace estimation

  • Chebyshef polynomial expansion

More generic infEP functionality

  • dense computations and sparse approximations using the same code

  • covering KL inference as a special cas of EP

New infKL function contributed by Emtiyaz Khan and Wu Lin

  • Conjugate-Computation Variational Inference algorithm

  • much more scalable than previous versions

Time-series covariance functions on the positive real line

  • covW (i-times integrated) Wiener process covariance

  • covOU (i-times integrated) Ornstein-Uhlenbeck process covariance (contributed by Juan Pablo Carbajal)

  • covULL underdamped linear Langevin process covariance (contributed by Robert MacKay)

  • covFBM Fractional Brownian motion covariance

New covariance functions

  • covWarp implements k(w(x),w(z)) where w is a "warping" function

  • covMatern has been extended to also accept non-integer distance parameters


Logo Kernel Adaptive Filtering Toolbox 2.0

by steven2358 - May 22, 2017, 10:05:33 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 32955 views, 6316 downloads, 0 subscriptions

About: A Matlab benchmarking toolbox for online and adaptive regression with kernels.

Changes:
  • Changes in algorithms' Matlab class format
  • New algorithms
  • Minor improvements and bug fixes

Logo DynaML 1.4.1

by mandar2812 - April 20, 2017, 18:32:33 CET [ Project Homepage BibTeX Download ] 6149 views, 2241 downloads, 0 subscriptions

About: DynaML is a Scala environment for conducting research and education in Machine Learning. DynaML comes packaged with a powerful library of classes implementing predictive models and a Scala REPL where one can not only build custom models but also play around with data work-flows.

Changes:

Initial Announcement on mloss.org.


Logo revrand 1.0.0

by dsteinberg - January 29, 2017, 04:33:54 CET [ Project Homepage BibTeX Download ] 52053 views, 13887 downloads, 0 subscriptions

Rating Empty StarEmpty StarEmpty StarEmpty StarEmpty Star
(based on 1 vote)

About: A library of scalable Bayesian generalised linear models with fancy features

Changes:
  • 1.0 release!
  • Now there is a random search phase before optimization of all hyperparameters in the regression algorithms. This improves the performance of revrand since local optima are more easily avoided with this improved initialisation
  • Regression regularizers (weight variances) associated with each basis object, this approximates GP kernel addition more closely
  • Random state can be set for all random objects
  • Numerous small improvements to make revrand production ready
  • Final report
  • Documentation improvements

Logo Collection of algorithms for Gaussian Processes 0.1-SNAPSHOT

by danielkorzekwa - February 18, 2016, 13:00:14 CET [ Project Homepage BibTeX Download ] 6414 views, 2178 downloads, 0 subscriptions

About: Collection of algorithms for Gaussian Processes. Regression, Classification, Multi task, Multi output, Hierarchical, Sparse

Changes:

Initial Announcement on mloss.org.


Logo Cognitive Foundry 3.4.2

by Baz - October 30, 2015, 06:53:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 77627 views, 15653 downloads, 0 subscriptions

About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications.

Changes:
  • General:
    • Upgraded MTJ to 1.0.3.
  • Common:
    • Added package for hash function computation including Eva, FNV-1a, MD5, Murmur2, Prime, SHA1, SHA2
    • Added callback-based forEach implementations to Vector and InfiniteVector, which can be faster for iterating through some vector types.
    • Optimized DenseVector by removing a layer of indirection.
    • Added method to compute set of percentiles in UnivariateStatisticsUtil and fixed issue with percentile interpolation.
    • Added utility class for enumerating combinations.
    • Adjusted ScalarMap implementation hierarchy.
    • Added method for copying a map to VectorFactory and moved createVectorCapacity up from SparseVectorFactory.
    • Added method for creating square identity matrix to MatrixFactory.
    • Added Random implementation that uses a cached set of values.
  • Learning:
    • Implemented feature hashing.
    • Added factory for random forests.
    • Implemented uniform distribution over integer values.
    • Added Chi-squared similarity.
    • Added KL divergence.
    • Added general conditional probability distribution.
    • Added interfaces for Regression, UnivariateRegression, and MultivariateRegression.
    • Fixed null pointer exception that can happen in K-means with an empty cluster.
    • Fixed name of maxClusters property on AgglomerativeClusterer (was called maxMinDistance).
  • Text:
    • Improvements to LDA Gibbs sampler.

Logo JMLR SHOGUN 4.0.0

by sonne - February 5, 2015, 09:09:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 220832 views, 36019 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.

Changes:

This release features the work of our 8 GSoC 2014 students [student; mentors]:

  • OpenCV Integration and Computer Vision Applications [Abhijeet Kislay; Kevin Hughes]
  • Large-Scale Multi-Label Classification [Abinash Panda; Thoralf Klein]
  • Large-scale structured prediction with approximate inference [Jiaolong Xu; Shell Hu]
  • Essential Deep Learning Modules [Khaled Nasr; Sergey Lisitsyn, Theofanis Karaletsos]
  • Fundamental Machine Learning: decision trees, kernel density estimation [Parijat Mazumdar ; Fernando Iglesias]
  • Shogun Missionary & Shogun in Education [Saurabh Mahindre; Heiko Strathmann]
  • Testing and Measuring Variable Interactions With Kernels [Soumyajit De; Dino Sejdinovic, Heiko Strathmann]
  • Variational Learning for Gaussian Processes [Wu Lin; Heiko Strathmann, Emtiyaz Khan]

It also contains several cleanups and bugfixes:

Features

  • New Shogun project description [Heiko Strathmann]
  • ID3 algorithm for decision tree learning [Parijat Mazumdar]
  • New modes for PCA matrix factorizations: SVD & EVD, in-place or reallocating [Parijat Mazumdar]
  • Add Neural Networks with linear, logistic and softmax neurons [Khaled Nasr]
  • Add kernel multiclass strategy examples in multiclass notebook [Saurabh Mahindre]
  • Add decision trees notebook containing examples for ID3 algorithm [Parijat Mazumdar]
  • Add sudoku recognizer ipython notebook [Alejandro Hernandez]
  • Add in-place subsets on features, labels, and custom kernels [Heiko Strathmann]
  • Add Principal Component Analysis notebook [Abhijeet Kislay]
  • Add Multiple Kernel Learning notebook [Saurabh Mahindre]
  • Add Multi-Label classes to enable Multi-Label classification [Thoralf Klein]
  • Add rectified linear neurons, dropout and max-norm regularization to neural networks [Khaled Nasr]
  • Add C4.5 algorithm for multiclass classification using decision trees [Parijat Mazumdar]
  • Add support for arbitrary acyclic graph-structured neural networks [Khaled Nasr]
  • Add CART algorithm for classification and regression using decision trees [Parijat Mazumdar]
  • Add CHAID algorithm for multiclass classification and regression using decision trees [Parijat Mazumdar]
  • Add Convolutional Neural Networks [Khaled Nasr]
  • Add Random Forests algorithm for ensemble learning using CART [Parijat Mazumdar]
  • Add Restricted Botlzmann Machines [Khaled Nasr]
  • Add Stochastic Gradient Boosting algorithm for ensemble learning [Parijat Mazumdar]
  • Add Deep contractive and denoising autoencoders [Khaled Nasr]
  • Add Deep belief networks [Khaled Nasr]

Bugfixes

  • Fix reference counting bugs in CList when reference counting is on [Heiko Strathmann, Thoralf Klein, lambday]
  • Fix memory problem in PCA::apply_to_feature_matrix [Parijat Mazumdar]
  • Fix crash in LeastAngleRegression for the case D greater than N [Parijat Mazumdar]
  • Fix memory violations in bundle method solvers [Thoralf Klein]
  • Fix fail in library_mldatahdf5.cpp example when http://mldata.org is not working properly [Parijat Mazumdar]
  • Fix memory leaks in Vowpal Wabbit, LibSVMFile and KernelPCA [Thoralf Klein]
  • Fix memory and control flow issues discovered by Coverity [Thoralf Klein]
  • Fix R modular interface SWIG typemap (Requires SWIG >= 2.0.5) [Matt Huska]

Cleanup and API Changes

  • PCA now depends on Eigen3 instead of LAPACK [Parijat Mazumdar]
  • Removing redundant and fixing implicit imports [Thoralf Klein]
  • Hide many methods from SWIG, reducing compile memory by 500MiB [Heiko Strathmann, Fernando Iglesias, Thoralf Klein]

Logo pyGPs 1.3.2

by mn - January 17, 2015, 13:08:43 CET [ Project Homepage BibTeX Download ] 31272 views, 7885 downloads, 0 subscriptions

About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning.

Changes:

Changelog pyGPs v1.3.2

December 15th 2014

  • pyGPs added to pip
  • mathematical definitions of kernel functions available in documentation
  • more error message added

Logo PILCO policy search framework 0.9

by marc - September 27, 2013, 12:45:12 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 21159 views, 3367 downloads, 0 subscriptions

About: Data-efficient policy search framework using probabilistic Gaussian process models

Changes:

Initial Announcement on mloss.org.


Logo GPgrid toolkit for fast GP analysis on grid input 0.1

by ejg20 - September 16, 2013, 18:01:16 CET [ BibTeX Download ] 8307 views, 2636 downloads, 0 subscriptions

About: GPgrid toolkit for fast GP analysis on grid input

Changes:

Initial Announcement on mloss.org.


Logo AdditiveGP Toolkit for Fast GP Inference using Projected Additive Approximation 0.1

by ejg20 - September 14, 2013, 21:25:18 CET [ BibTeX Download ] 11093 views, 2734 downloads, 0 subscriptions

About: Fast Multidimensional GP Inference using Projected Additive Approximation

Changes:

Initial Announcement on mloss.org.


Logo MLDemos 0.5.1

by basilio - March 2, 2013, 16:06:13 CET [ Project Homepage BibTeX Download ] 70529 views, 16452 downloads, 0 subscriptions

About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning.

Changes:

New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance

New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)


Logo BRML toolbox 070711

by DavidBarber - July 17, 2011, 19:30:15 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 78305 views, 7295 downloads, 0 subscriptions

About: Bayesian Reasoning and Machine Learning toolbox

Changes:

Fixed some small bugs and updated some demos.


Logo Variation Gaussian Approximate Inference for Bayesian Generalized Linear Models 1.0

by ed - April 9, 2011, 15:32:27 CET [ BibTeX BibTeX for corresponding Paper Download ] 11025 views, 3238 downloads, 0 subscriptions

About: Matlab implementation of variational gaussian approximate inference for Bayesian Generalized Linear Models.

Changes:

Code restructure and bug fix.