About: Universal Python-written numerical optimization toolbox. Problems: NLP, LP, QP, NSP, MILP, LSP, LLSP, MMP, GLP, SLE, MOP etc; general logical constraints, categorical variables, automatic differentiation, stochastic programming, interval analysis, many other goodies Changes:http://openopt.org/Changelog
|
About: Tapkee is an efficient and flexible C++ template library for dimensionality reduction. Changes:Initial Announcement on mloss.org.
|
About: Massive Online Analysis (MOA) is a real time analytic tool for data streams. It is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and it is released under the GNU GPL license. Changes:New version November 2013
|
About: MultiBoost is a multi-purpose boosting package implemented in C++. It is based on the multi-class/multi-task AdaBoost.MH algorithm [Schapire-Singer, 1999]. Basic base learners (stumps, trees, products, Haar filters for image processing) can be easily complemented by new data representations and the corresponding base learners, without interfering with the main boosting engine. Changes:Major changes :
Minor fixes:
|
About: The CTBN-RLE is a C++ package of executables and libraries for inference and learning algorithms for continuous time Bayesian networks (CTBNs). Changes:compilation problems fixed
|
About: Probabilistic performance evaluation for multiclass classification using the posterior balanced accuracy Changes:Added bibtex information.
|
About: CARP: The Clustering Algorithms’ Referee Package Changes:Generalized overlap error and some bugs have been fixed
|
About: Bob is a free signal-processing and machine learning toolbox originally developed by the Biometrics group at Idiap Research Institute, in Switzerland. Changes:Bob 1.2.0 comes about 1 year after we released Bob 1.0.0. This new release comes with a big set of new features and lots of changes under the hood to make your experiments run even smoother. Some statistics: Diff URL: https://github.com/idiap/bob/compare/v1.1.4...HEAD Commits: 629 Files changed: 954 Contributors: 7 Here is a quick list of things you should pay attention for while integrating your satellite packages against Bob 1.2.x:
For a detailed list of changes and additions, please look at our Changelog page for this release and minor updates: https://github.com/idiap/bob/wiki/Changelog-from-1.1.4-to-1.2 https://github.com/idiap/bob/wiki/Changelog-from-1.2.0-to-1.2.1 https://github.com/idiap/bob/wiki/Changelog-from-1.2.1-to-1.2.2
|
About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning. Changes:New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)
|
About: mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL. Changes:New features:
Fix:
|
About: Locally Weighted Projection Regression (LWPR) is a recent algorithm that achieves nonlinear function approximation in high dimensional spaces with redundant and irrelevant input dimensions. At its [...] Changes:Version 1.2.4
|
About: MATLAB toolbox for advanced Brain-Computer Interface (BCI) research. Changes:Initial Announcement on mloss.org.
|
About: The SGD-2.0 package contains implementations of the SGD and ASGD algorithms for linear SVMs and linear CRFs. Changes:Version 2.0 features ASGD.
|
About: FLANN is a library for performing fast approximate nearest neighbor searches in high dimensional spaces. It contains a collection of algorithms we found to work best for nearest neighbor search. Changes:See project page for changes.
|
About: The library is focused on implementation of propagation based approximate inference methods. Also implemented are a clique tree based exact inference, Gibbs sampling, and the mean field algorithm. Changes:Initial Announcement on mloss.org.
|
About: Accurate splice site predictor for a variety of genomes. Changes:Asp now supports three formats: -g fname for gff format -s fname for spf format -b dir for a binary format compatible with mGene. And a new switch -t which switches on a sigmoid-based transformation of the svm scores to get scores between 0 and 1.
|
About: This toolbox provides functions for maximizing and minimizing submodular set functions, with applications to Bayesian experimental design, inference in Markov Random Fields, clustering and others. Changes:
|
About: A Java library to create, process and manage mixtures of exponential families. Changes:Initial Announcement on mloss.org.
|
About: SHARK is a modular C++ library for the design and optimization of adaptive systems. It provides various machine learning and computational intelligence techniques. Changes:
|
About: Elefant is an open source software platform for the Machine Learning community licensed under the Mozilla Public License (MPL) and developed using Python, C, and C++. We aim to make it the platform [...] Changes:This release contains the Stream module as a first step in the direction of providing C++ library support. Stream aims to be a software framework for the implementation of large scale online learning algorithms. Large scale, in this context, should be understood as something that does not fit in the memory of a standard desktop computer. Added Bundle Methods for Regularized Risk Minimization (BMRM) allowing to choose from a list of loss functions and solvers (linear and quadratic). Added the following loss classes: BinaryClassificationLoss, HingeLoss, SquaredHingeLoss, ExponentialLoss, LogisticLoss, NoveltyLoss, LeastMeanSquareLoss, LeastAbsoluteDeviationLoss, QuantileRegressionLoss, EpsilonInsensitiveLoss, HuberRobustLoss, PoissonRegressionLoss, MultiClassLoss, WinnerTakesAllMultiClassLoss, ScaledSoftMarginMultiClassLoss, SoftmaxMultiClassLoss, MultivariateRegressionLoss Graphical User Interface provides now extensive documentation for each component explaining state variables and port descriptions. Changed saving and loading of experiments to XML (thereby avoiding storage of large input data structures). Unified automatic input checking via new static typing extending Python properties. Full support for recursive composition of larger components containing arbitrary statically typed state variables.
|