Showing Items 221-240 of 676 on page 12 of 34: First Previous 7 8 9 10 11 12 13 14 15 16 17 Next Last
About: Encog is a Machine Learning framework for Java, C#, Javascript and C/C++ that supports SVM's, Genetic Programming, Bayesian Networks, Hidden Markov Models and other algorithms. Changes:Changes for Encog 3.2: Issue #53: Fix Out Of Range Bug In BasicMLSequenceSet. Issue #52: Unhandled exception in Encog.Util.File.ResourceLoader.CreateStream (ResourceLoader.cs) Issue #50: Concurrency bugs in PruneIncremental Issue #48: Unit Tests Failing - TestHessian Issue #46: Couple of small fixes - Temporal DataSet and SCG training Issue #45: Fixed EndMinutesStrategy to correctly evaluate ShouldStop after the specified number of minutes have elapsed. Issue #44: Encog.ML.Data.Basic.BasicMLDataPairCentroid.Add() & .Remove() Issue #43: Unit Tests Failing - Matrix not full rank Issue #42: Nuget - NuSpec Issue #36: Load Examples easier
|
About: Universal Python-written numerical optimization toolbox. Problems: NLP, LP, QP, NSP, MILP, LSP, LLSP, MMP, GLP, SLE, MOP etc; general logical constraints, categorical variables, automatic differentiation, stochastic programming, interval analysis, many other goodies Changes:http://openopt.org/Changelog
|
About: Document/Text preprocessing for topic models: suite of Perl scripts for preprocessing text collections to create dictionaries and bag/list files for use by topic modelling software. Changes:Moved distribution and code across to GitHub. Changed "ldac" format to have 0 offset for word indices. Added "document frequency" (df) filtering on selection of tokens for linkTables. Playing with linkParse but its still unuseable generally.
|
About: Big Random Forests Changes:Fetched by r-cran-robot on 2015-11-01 00:00:04.072762
|
About: GPU-accelerated java deep neural networks Changes:Initial Announcement on mloss.org.
|
About: peewit provides services for programming, running and result examination of machine learning experiments. It does not include any ML algorithms, has no GUI, and presumes certain uniformity of the experimental layout. But it does not make assumptions on the type of task under study. The current version-number is 0.10. Changes:v-cube with side-cubes
|
About: Open Source Machine Learning Server Changes:
See release notes - https://predictionio.atlassian.net/secure/ReleaseNote.jspa?projectId=10000&version=11801
|
About: This is an unoptimized implementation of the RFD binary descriptor, which is published in the following paper. B. Fan, et al. Receptive Fields Selection for Binary Feature Description. IEEE Transaction on Image Processing, 2014. doi: http://dx.doi.org/10.1109/TIP.2014.2317981 Changes:Initial Announcement on mloss.org.
|
About: RLLib is a lightweight C++ template library that implements incremental, standard, and gradient temporal-difference learning algorithms in Reinforcement Learning. It is an optimized library for robotic applications and embedded devices that operates under fast duty cycles (e.g., < 30 ms). RLLib has been tested and evaluated on RoboCup 3D soccer simulation agents, physical NAO V4 humanoid robots, and Tiva C series launchpad microcontrollers to predict, control, learn behaviors, and represent learnable knowledge. The implementation of the RLLib library is inspired by the RLPark API, which is a library of temporal-difference learning algorithms written in Java. Changes:Current release version is v2.0.
|
About: Generalised Stirling Numbers for Pitman-Yor Processes: this library provides ways of computing generalised 2nd-order Stirling numbers for Pitman-Yor and Dirichlet processes. Included is a tester and parameter optimiser. This accompanies Buntine and Hutter's article: http://arxiv.org/abs/1007.0296, and a series of papers by Buntine and students at NICTA and ANU. Changes:Moved repository to GitHub, and added thread support to use the main table lookups in multi-threaded code.
|
About: GradMC is an algorithm for MR motion artifact removal implemented in Matlab Changes:Added support for multi-rigid motion correction.
|
About: Lightweight CPU/GPU Matrix/Tensor Template Library in C++/CUDA. Support element-wise expression expand in high performance. Code once, run smoothly on both GPU and CPU Changes:Initial Announcement on mloss.org.
|
About: CXXNET (spelled as: C plus plus net) is a neural network toolkit build on mshadow(https://github.com/tqchen/mshadow). It is yet another implementation of (convolutional) neural network. It is in C++, with about 1000 lines of network layer implementations, easily configuration via config file, and can get the state of art performance. Changes:Initial Announcement on mloss.org.
|
About: Tapkee is an efficient and flexible C++ template library for dimensionality reduction. Changes:Initial Announcement on mloss.org.
|
About: Massive Online Analysis (MOA) is a real time analytic tool for data streams. It is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and it is released under the GNU GPL license. Changes:New version November 2013
|
About: SAMOA is a platform for mining big data streams. It is a distributed streaming machine learning (ML) framework that contains a programing abstraction for distributed streaming ML algorithms. Changes:Initial Announcement on mloss.org.
|
About: MultiBoost is a multi-purpose boosting package implemented in C++. It is based on the multi-class/multi-task AdaBoost.MH algorithm [Schapire-Singer, 1999]. Basic base learners (stumps, trees, products, Haar filters for image processing) can be easily complemented by new data representations and the corresponding base learners, without interfering with the main boosting engine. Changes:Major changes :
Minor fixes:
|
About: The EnsembleSVM library offers functionality to perform ensemble learning using Support Vector Machine (SVM) base models. In particular, we offer routines for binary ensemble models using SVM base classifiers. Experimental results have shown the predictive performance to be comparable with standard SVM models but with drastically reduced training time. Ensemble learning with SVM models is particularly useful for semi-supervised tasks. Changes:The library has been updated and features a variety of new functionality as well as more efficient implementations of original features. The following key improvements have been made:
The API and ABI have undergone significant changes, many of which are due to the transition to C++11.
|