About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. Changes:This release adds a bunch of new image processing routines as well as many minor usability improvements and bug fixes.
|
About: MLweb is an open source project that aims at bringing machine learning capabilities into web pages and web applications, while maintaining all computations on the client side. It includes (i) a javascript library to enable scientific computing within web pages, (ii) a javascript library implementing machine learning algorithms for classification, regression, clustering and dimensionality reduction, (iii) a web application providing a matlab-like development environment. Changes:
|
About: Kernel-based Learning Platform (KeLP) is Java framework that supports the implementation of kernel-based learning algorithms, as well as an agile definition of kernel functions over generic data representation, e.g. vectorial data or discrete structures. The framework has been designed to decouple kernel functions and learning algorithms, through the definition of specific interfaces. Once a new kernel function has been implemented, it can be automatically adopted in all the available kernel-machine algorithms. KeLP includes different Online and Batch Learning algorithms for Classification, Regression and Clustering, as well as several Kernel functions, ranging from vector-based to structural kernels. It allows to build complex kernel machine based systems, leveraging on JSON/XML interfaces to instantiate prediction models without writing a single line of code. Changes:In addition to minor improvements and bug fixes, this release includes:
Check out this new version from our repositories. API Javadoc is already available. Your suggestions will be very precious for us, so download and try KeLP 2.2.2!
|
About: pycobra is a python library for ensemble learning, which serves as a toolkit for regression, classification, and visualisation. It is scikit-learn compatible and fits into the existing scikit-learn ecosystem. Changes:pycobra is further pep8 compliant, has improved tests and more plotting options.
|
About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...] Changes:This release include a lot of bug fixes and improvements. Some of these are detailed at http://jira.pentaho.com/projects/DATAMINING/issues/DATAMINING-771 As usual, for a complete list of changes refer to the changelogs.
|
About: The GPML toolbox is a flexible and generic Octave/Matlab implementation of inference and prediction with Gaussian process models. The toolbox offers exact inference, approximate inference for non-Gaussian likelihoods (Laplace's Method, Expectation Propagation, Variational Bayes) as well for large datasets (FITC, VFE, KISS-GP). A wide range of covariance, likelihood, mean and hyperprior functions allows to create very complex GP models. Changes:Logdet-estimation functionality for grid-based approximate covariances
More generic infEP functionality
New infKL function contributed by Emtiyaz Khan and Wu Lin
Time-series covariance functions on the positive real line
New covariance functions
|
About: General purpose Java Machine Learning library for classification, regression, and clustering. Changes:See github release tab for change info
|
About: Toolkit for parametric and nonparametric regression and classification. Changes:Initial Announcement on mloss.org.
|
About: RLScore - regularized least-squares machine learning algorithms package Changes:Initial Announcement on mloss.org.
|
About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods. Changes:2016-06-09 Version 4.7 Development and release branches available at https://github.com/gpstuff-dev/gpstuff New features
Improvements
Bugfixes
|
About: Automatically finds the best model with its best parameter settings for a given classification or regression task. Changes:Initial Announcement on mloss.org.
|
About: SALSA (Software lab for Advanced machine Learning with Stochastic Algorithms) is an implementation of the well-known stochastic algorithms for Machine Learning developed in the high-level technical computing language Julia. The SALSA software package is designed to address challenges in sparse linear modelling, linear and non-linear Support Vector Machines applied to large data samples with user-centric and user-friendly emphasis. Changes:Initial Announcement on mloss.org.
|
About: A Machine Learning framework for Objective-C and Swift (OS X / iOS) Changes:Initial Announcement on mloss.org.
|
About: Hivemall is a scalable machine learning library running on Hive/Hadoop. Changes:
|
About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning. Changes:Changelog pyGPs v1.3.2December 15th 2014
|
About: STK++: A Statistical Toolkit Framework in C++ Changes:Inegrating openmp to the current release. Many enhancement in the clustering project. bug fix
|
About: Gaussian processes with general nonlinear likelihoods using the unscented transform or Taylor series linearisation. Changes:Initial Announcement on mloss.org.
|
About: Boosting algorithms for classification and regression, with many variations. Features include: Scalable and robust; Easily customizable loss functions; One-shot training for an entire regularization path; Continuous checkpointing; much more Changes:
|
About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning. Changes:New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)
|
About: Orange is a component-based machine learning and data mining software. It includes a friendly yet powerful and flexible graphical user interface for visual programming. For more advanced use(r)s, [...] Changes:The core of the system (except the GUI) no longer includes any GPL code and can be licensed under the terms of BSD upon request. The graphical part remains under GPL. Changed the BibTeX reference to the paper recently published in JMLR MLOSS.
|