About: BayesOpt is an efficient, C++ implementation of the Bayesian optimization methodology for nonlinear-optimization, experimental design and stochastic bandits. In the literature it is also called Sequential Kriging Optimization (SKO) or Efficient Global Optimization (EGO). There are also interfaces for C, Matlab/Octave and Python. Changes:-Fixed bug in save/restore. -Fixed bug in initial design.
|
About: Incremental (Online) Nonparametric Classifier. You can classify both points (standard) or matrices (multivariate time series). Java and Matlab code already available. Changes:version 2: parameterless system, constant model size, prediction confidence (for active learning). NEW!! C++ version at: https://github.com/ilaria-gori/ABACOC
|
About: The SUMO Toolbox is a Matlab toolbox that automatically builds accurate surrogate models (also known as metamodels or response surface models) of a given data source (e.g., simulation code, data set, script, ...) within the accuracy and time constraints set by the user. The toolbox minimizes the number of data points (which it selects automatically) since they are usually expensive. Changes:Incremental update, fixing some cosmetic issues, coincides with JMLR publication.
|
About: This toolbox provides functions for maximizing and minimizing submodular set functions, with applications to Bayesian experimental design, inference in Markov Random Fields, clustering and others. Changes:
|
About: Reference implementation of the LASVM online and active SVM algorithms as described in the JMLR paper. The interesting bit is a small C library that implements the LASVM process and reprocess [...] Changes:Minor bug fix
|