About: The Multiagent decision process (MADP) Toolbox is a free C++ software toolbox for scientific research in decision-theoretic planning and learning in multiagent systems. Changes:-Includes freshly written spirit parser for .pomdp files. -Includes new code for pruning POMDP vectors; obviates dependence on Cassandra's code and old LP solve version. -Includes new factor graph solution code -Generalized firefighting CGBG domain added -Simulation class for Factored Dec-POMDPs and TOI Dec-MDPs -Approximate BG clustering methods and kGMAA with clustering.
|
About: Analytic engine for real-time large-scale streams containing structured and unstructured data. Changes:Initial Announcement on mloss.org.
|
About: An extensible C++ library of Hierarchical Bayesian clustering algorithms, such as Bayesian Gaussian mixture models, variational Dirichlet processes, Gaussian latent Dirichlet allocation and more. Changes:New maximum cluster argument for all algorithms. Also no more matlab interface since it seemed no one was using it, and I cannot support it any longer.
|
About: a tool for marking samples in images for database building, also including algorithm of LBP,HOG,and classifiers of SVM (six kernels), adaboost,BP and convolutional networks, extreme learning machine. Changes:Initial Announcement on mloss.org.
|
About: BayesOpt is an efficient, C++ implementation of the Bayesian optimization methodology for nonlinear-optimization, experimental design and stochastic bandits. In the literature it is also called Sequential Kriging Optimization (SKO) or Efficient Global Optimization (EGO). There are also interfaces for C, Matlab/Octave and Python. Changes:-Fixed bug in save/restore. -Fixed bug in initial design.
|
About: APRIL-ANN toolkit (A Pattern Recognizer In Lua with Artificial Neural Networks). This toolkit incorporates ANN algorithms (as dropout, stacked denoising auto-encoders, convolutional neural networks), with other pattern recognition methods as hidden makov models (HMMs) among others. Changes:
C/C++
|
About: This algorithm is described in Deep Semantic Ranking Based Hashing for Multi-Label Image Retrieval. See https://github.com/zhaofang0627/cuda-convnet-for-hashing Changes:Initial Announcement on mloss.org.
|
About: Efficient and Flexible Distributed/Mobile Deep Learning Framework, for python, R, Julia and more Changes:This version comes with Distributed and Mobile Examples
|
About: PCVM library a c++/armadillo implementation of the Probabilistic Classification Vector Machine. Changes:30.10.2015 * code has been revised in some places fixing also some errors different multiclass schemes and hdf5 file support added. Some speed ups and memory savings by better handling of intermediate objects. 27.05.2015: - Matlab binding under Windows available. Added a solution file for VS'2013 express to compile a matlab mex binding. Can not yet confirm that under windows the code is really using multiple cores (under linux it does) 29.04.2015 * added an implementation of the Nystroem based PCVM includes: Nystroem based singular value decomposition (SVD), eigenvalue decomposition (EVD) and pseudo-inverse calculation (PINV) 22.04.2015 * implementation of the PCVM released
|
About: This code is provided by Jun Wan. It is used in the Chalearn one-shot learning gesture challenge (round 2). This code includes: bag of features, 3D MoSIFT-based features (i.e. 3D MoSIFT, 3D EMoSIFT and 3D SMoSIFT), and the MFSK feature. Changes:Initial Announcement on mloss.org.
|
About: A platform-independent C++ framework for machine learning, graphical models, and computer vision research and development. Changes:Version 1.9:
|
About: libnabo is a fast K Nearset Neighbor library for low-dimensional spaces. Changes:
|
About: libDAI provides free & open source implementations of various (approximate) inference methods for graphical models with discrete variables, including Bayesian networks and Markov Random Fields. Changes:Release 0.3.2 fixes various bugs and adds GLC (Generalized Loop Corrections) written by Siamak Ravanbakhsh.
|
About: A Deep Learning API and server Changes:Initial Announcement on mloss.org.
|
About: Learning M-Way Tree - Web Scale Clustering - EM-tree, K-tree, k-means, TSVQ, repeated k-means, clustering, random projections, random indexing, hashing, bit signatures Changes:Initial Announcement on mloss.org.
|
About: Incremental (Online) Nonparametric Classifier. You can classify both points (standard) or matrices (multivariate time series). Java and Matlab code already available. Changes:version 2: parameterless system, constant model size, prediction confidence (for active learning). NEW!! C++ version at: https://github.com/ilaria-gori/ABACOC
|
About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems Changes:
|
About: MIPS is a software library for state-of-the-art graph mining algorithms. The library is platform independent, written in C++(03), and aims at implementing generic and efficient graph mining algorithms. Changes:description update
|
About: A streaming inference and query engine for the Cross-Categorization model of tabular data. Changes:Initial Announcement on mloss.org.
|
About: Libcmaes is a multithreaded C++11 library (with Python bindings) for high performance blackbox stochastic optimization of difficult, possibly non-linear and non-convex functions, using the CMA-ES algorithm for Covariance Matrix Adaptation Evolution Strategy. Libcmaes is useful to minimize / maximize any function, without information regarding gradient or derivability. Changes:This is a major release, with several novelties, improvements and fixes, among which:
|