Projects authored by haiping lu.


Logo Multilinear Principal Component Analysis 1.3

by hplu - September 8, 2013, 13:04:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18944 views, 3439 downloads, 0 subscriptions

About: A Matlab implementation of Multilinear PCA (MPCA) and MPCA+LDA for dimensionality reduction of tensor data with sample code on gait recognition

Changes:
  1. The MPCA paper is updated with a typo (the MAD measure in Table II) corrected.

  2. Tensor toolbox version 2.1 is included for convenience.

  3. Full code on gait recognition is included for verification and comparison.


Logo Uncorrelated Multilinear Discriminant Analysis 1.0

by hplu - July 7, 2012, 06:27:56 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 10949 views, 2206 downloads, 0 subscriptions

About: A Matlab implementation of Uncorrelated Multilinear Discriminant Analysis (UMLDA) for dimensionality reduction of tensor data via tensor-to-vector projection

Changes:

Initial Announcement on mloss.org.


Logo Uncorrelated Multilinear Principal Component Analysis 1.0

by hplu - June 18, 2012, 17:23:52 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 10329 views, 2177 downloads, 0 subscriptions

About: A Matlab implementation of Uncorrelated Multilinear PCA (UMPCA) for dimensionality reduction of tensor data via tensor-to-vector projection

Changes:

Initial Announcement on mloss.org.


Logo Multilinear Principal Component Analysis 1.2 1.2

by openpr_nlpr - April 16, 2012, 09:04:08 CET [ Project Homepage BibTeX Download ] 7788 views, 2188 downloads, 0 subscriptions

About: This archive contains a Matlab implementation of the Multilinear Principal Component Analysis (MPCA) algorithm and MPCA+LDA, as described in the paper Haiping Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "MPCA: Multilinear Principal Component Analysis of Tensor Objects", IEEE Transactions on Neural Networks, Vol. 19, No. 1, Page: 18-39, January 2008.

Changes:

Initial Announcement on mloss.org.