-
- Description:
We present BudgetedSVM, an open-source C++ toolbox comprising highly-optimized implementations of recently proposed algorithms for scalable training of Support Vector Machine (SVM) approximators: Adaptive Multi-hyperplane Machines, Low-rank Linearization SVM, and Budgeted Stochastic Gradient Descent. BudgetedSVM trains models with accuracy comparable to LibSVM in time comparable to LibLinear, solving non-linear problems with millions of high-dimensional examples within minutes on a regular computer. We provide command-line and Matlab interfaces to BudgetedSVM, an efficient API for handling large-scale, high-dimensional data sets, as well as detailed documentation to help developers use and further extend the toolbox.
Overview of the main features of the BudgetedSVM package are listed as follows:
- We provide efficient implementations of algorithms for highly-scalable non-linear SVM training.
- The toolbox can handle large-scale, high-dimensional data sets that cannot be loaded into memory.
- The toolbox requires constant memory to train accurate models that solve highly non-linear problems.
- We provide command-line and Matlab interfaces to BudgetedSVM.
- We provide an efficient API that provides functionalities for handling large-scale, high-dimensional data sets. Using BudgetedSVM API, data sets with millions data points and/or features are easily handled. For more details, please see the documentation included in the download package.
- Changes to previous version:
Changed license from LGPL v3 to Modified BSD.
- BibTeX Entry: Download
- Corresponding Paper BibTeX Entry: Download
- Supported Operating Systems: Linux, Windows, Mac Os X
- Data Formats: Libsvm Format
- Tags: Svm, Large Scale Learning, Big Data, Machine Learning Toolbox, Nonlinear Classification
- Archive: download here
Comments
No one has posted any comments yet. Perhaps you'd like to be the first?
Leave a comment
You must be logged in to post comments.