-
- Description:
libcmaes is a multithreaded C++ implementation of the CMA-ES algorithm for stochastic optimization of nonlinear 'blackbox' functions. The implemented algorithms have a wide range of applications in various disciplines, ranging from pure function optimization, optimization in industrial and scientific applications, to the solving of reinforcement and machine learning problems.
Current features include: high-level API for simple use in external applications, implementatio of several flavors of CMA-ES, IPOP-CMA-ES, BIPOP-CMA-ES, active CMA-ES, active IPOP and BIPOP restart strategies, sep-CMA-ES (linear time & space complexity) along with support for IPOP and BIPOP flavors as well.
Some operations benefit from multicores, and there's support for objective function gradient, when available. A control exe in the command line is provided for running the algorithm over a range of classical single-objective optimization problems.
Full documentation is available from https://github.com/beniz/libcmaes/wiki
Developer API documentation is available from http://beniz.github.io/libcmaes/doc/html/index.html
- Changes to previous version:
- Added customization of data to file streaming function, ref #51
- Added configure control for compiling the library alone without examples or tools, ref #11
- Fixed code in order to avoid various compiler warnings
- Fixed sample code in README, ref #54
- Fixed get_max_iter and set_mt_feval in Parameters object
- New CMAParameters constructor, from x0 as a vector of double
- Updated building instructions for Mac OSX
- New set_str_algo in Parameters object
- BibTeX Entry: Download
- Supported Operating Systems: Linux, Windows, Mac Os X
- Data Formats: Any
- Tags: Black Box Optimization, Evolution Strategy, Stochastic Optimization
- Archive: download here
Comments
No one has posted any comments yet. Perhaps you'd like to be the first?
Leave a comment
You must be logged in to post comments.