Projects that are tagged with clustering.
Showing Items 1-20 of 46 on page 1 of 3: 1 2 3 Next

Logo JMLR dlib ml 19.11

by davis685 - May 18, 2018, 04:19:52 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 434018 views, 80502 downloads, 0 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release adds a bunch of new image processing routines as well as many minor usability improvements and bug fixes.


Logo 1SpectralClustering 1.2

by tbuehler - May 1, 2018, 19:26:07 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 34061 views, 7501 downloads, 0 subscriptions

About: A fast and scalable graph-based clustering algorithm based on the eigenvectors of the nonlinear 1-Laplacian.

Changes:
  • improved optimization of ncut and rcut criterion
  • optimized eigenvector initialization
  • changed default values for number of runs
  • several internal optimizations
  • made console output more informative

Logo MLweb 1.2

by lauerfab - February 23, 2018, 15:40:27 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 48206 views, 11133 downloads, 0 subscriptions

About: MLweb is an open source project that aims at bringing machine learning capabilities into web pages and web applications, while maintaining all computations on the client side. It includes (i) a javascript library to enable scientific computing within web pages, (ii) a javascript library implementing machine learning algorithms for classification, regression, clustering and dimensionality reduction, (iii) a web application providing a matlab-like development environment.

Changes:
  • Add bibtex entry of corresponding Neurocomputing paper
  • Create javascript modules to avoid global scope pollution in web pages

Logo KeLP 2.2.2

by kelpadmin - February 1, 2018, 00:57:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 61932 views, 15265 downloads, 0 subscriptions

About: Kernel-based Learning Platform (KeLP) is Java framework that supports the implementation of kernel-based learning algorithms, as well as an agile definition of kernel functions over generic data representation, e.g. vectorial data or discrete structures. The framework has been designed to decouple kernel functions and learning algorithms, through the definition of specific interfaces. Once a new kernel function has been implemented, it can be automatically adopted in all the available kernel-machine algorithms. KeLP includes different Online and Batch Learning algorithms for Classification, Regression and Clustering, as well as several Kernel functions, ranging from vector-based to structural kernels. It allows to build complex kernel machine based systems, leveraging on JSON/XML interfaces to instantiate prediction models without writing a single line of code.

Changes:

In addition to minor improvements and bug fixes, this release includes:

  • The possibility to generate the Compositional GRCT and the Compositional LCT data structures in kelp-input-generator.

  • New metrics for evaluating Classification Tasks.

  • New Tutorial and Unit Tests.

Check out this new version from our repositories. API Javadoc is already available. Your suggestions will be very precious for us, so download and try KeLP 2.2.2!


Logo WEKA 3.9.2

by mhall - December 22, 2017, 03:39:19 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 143567 views, 34708 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

This release include a lot of bug fixes and improvements. Some of these are detailed at

http://jira.pentaho.com/projects/DATAMINING/issues/DATAMINING-771

As usual, for a complete list of changes refer to the changelogs.


Logo HIERDENC 1.0

by billandreo - October 31, 2017, 16:01:32 CET [ Project Homepage BibTeX Download ] 7003 views, 3874 downloads, 0 subscriptions

About: This is a tool for retrieving nearest neighbors and clustering of large categorical data sets represented in transactional form. The clustering is achieved via a locality-sensitive hashing of categorical datasets for speed and scalability.

Changes:

Initial Announcement on mloss.org.


Logo pSpectralClustering 1.2

by tbuehler - July 30, 2017, 20:07:52 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 25542 views, 5106 downloads, 0 subscriptions

About: A generalized version of spectral clustering using the graph p-Laplacian.

Changes:

various internal optimizations


Logo APCluster 1.4.4

by UBod - July 28, 2017, 09:47:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 108773 views, 20493 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: The apcluster package implements Frey's and Dueck's Affinity Propagation clustering in R. The package further provides leveraged affinity propagation, exemplar-based agglomerative clustering, and various tools for visual analysis of clustering results.

Changes:
  • changed dependency to suggested package 'kebabs' to version of at least 1.5.4 for improved interoperability
  • bug fix in as.dendrogram() method with signature 'AggExResult'
  • added discrepancy metric to distance computations and updated src/distanceL.c to new version
  • registered C/C++ subroutines
  • minor change in the vignette template
  • moved NEWS to inst/NEWS
  • added inst/COPYRIGHT

Logo ADENINE 0.1.4

by samuelefiorini - February 17, 2017, 14:50:49 CET [ Project Homepage BibTeX Download ] 11275 views, 2877 downloads, 0 subscriptions

About: ADENINE (A Data ExploratioN pIpeliNE) is a machine learning framework for data exploration that encompasses state-of-the-art techniques for missing values imputing, data preprocessing, unsupervised feature learning and clustering tasks.

Changes:
  • Adenine can now distribute the execution of its pipelines on multiple machines via MPI
  • kNN data imputing strategy is now implemented
  • added python 2.7 and 3.5 support
  • stability improved and bug fixed

Logo ELKI 0.7.1

by erich - March 14, 2016, 13:44:02 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 68934 views, 13220 downloads, 0 subscriptions

About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods.

Changes:

Additions and improvements from ELKI 0.7.0 to 0.7.1:

Algorithm additions:

  • GriDBSCAN: DBSCAN using grid partitioning (Minkowski distances only)

  • Compare-Means and Sort-Means k-means variations (much faster than traditional k-means)

  • Visualization of dendrograms.

Important bug fixes:

  • Classes with no package ("default package") would cause errors.

  • The fast power function implementation was sometimes returning incorrect results.

  • Random sampling was sometimes not sampling from the full data set.

UI improvements:

  • The file input source will now automatically choose the Arff parser for .arff files.

  • MiniGUI now allows choosing other applications.

  • MiniGUI now displays the command line in a separate field.

  • MiniGUI displays an error message, if an incorrect classpath or JAyatana (on Ubuntu) is detected.

  • Export to png now works, we added a work-around for an open Batik bug.

Smaller changes:

  • Many smaller bug fixes.

  • C-Index for cluster evaluation now can process larger data sets.

  • OPTICS output of undefined reachability fixed.

  • External distance matrixes are easier to use and perform additional checks.

  • Precomputed distance matrixes can answer range and kNN queries.

  • Voronoi visualization can be switched in the menu now.

  • Improved backwards command line compatibility with additional aliases.

  • Added generated @since annotations in JavaDoc.

  • Many new unit tests, renamed to the Java conventions.

  • Low-level reading of service files, to have faster startup.


Logo libcluster 2.3

by dsteinberg - February 27, 2016, 00:36:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 21162 views, 4597 downloads, 0 subscriptions

About: An extensible C++ library of Hierarchical Bayesian clustering algorithms, such as Bayesian Gaussian mixture models, variational Dirichlet processes, Gaussian latent Dirichlet allocation and more.

Changes:

New maximum cluster argument for all algorithms. Also no more matlab interface since it seemed no one was using it, and I cannot support it any longer.


Logo Apache Mahout 0.11.1

by gsingers - November 9, 2015, 16:12:06 CET [ Project Homepage BibTeX Download ] 46858 views, 11106 downloads, 0 subscriptions

About: Apache Mahout is an Apache Software Foundation project with the goal of creating both a community of users and a scalable, Java-based framework consisting of many machine learning algorithm [...]

Changes:

Apache Mahout introduces a new math environment we call Samsara, for its theme of universal renewal. It reflects a fundamental rethinking of how scalable machine learning algorithms are built and customized. Mahout-Samsara is here to help people create their own math while providing some off-the-shelf algorithm implementations. At its core are general linear algebra and statistical operations along with the data structures to support them. You can use is as a library or customize it in Scala with Mahout-specific extensions that look something like R. Mahout-Samsara comes with an interactive shell that runs distributed operations on a Spark cluster. This make prototyping or task submission much easier and allows users to customize algorithms with a whole new degree of freedom. Mahout Algorithms include many new implementations built for speed on Mahout-Samsara. They run on Spark 1.3+ and some on H2O, which means as much as a 10x speed increase. You’ll find robust matrix decomposition algorithms as well as a Naive Bayes classifier and collaborative filtering. The new spark-itemsimilarity enables the next generation of cooccurrence recommenders that can use entire user click streams and context in making recommendations.


Logo Cognitive Foundry 3.4.2

by Baz - October 30, 2015, 06:53:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 74281 views, 14922 downloads, 0 subscriptions

About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications.

Changes:
  • General:
    • Upgraded MTJ to 1.0.3.
  • Common:
    • Added package for hash function computation including Eva, FNV-1a, MD5, Murmur2, Prime, SHA1, SHA2
    • Added callback-based forEach implementations to Vector and InfiniteVector, which can be faster for iterating through some vector types.
    • Optimized DenseVector by removing a layer of indirection.
    • Added method to compute set of percentiles in UnivariateStatisticsUtil and fixed issue with percentile interpolation.
    • Added utility class for enumerating combinations.
    • Adjusted ScalarMap implementation hierarchy.
    • Added method for copying a map to VectorFactory and moved createVectorCapacity up from SparseVectorFactory.
    • Added method for creating square identity matrix to MatrixFactory.
    • Added Random implementation that uses a cached set of values.
  • Learning:
    • Implemented feature hashing.
    • Added factory for random forests.
    • Implemented uniform distribution over integer values.
    • Added Chi-squared similarity.
    • Added KL divergence.
    • Added general conditional probability distribution.
    • Added interfaces for Regression, UnivariateRegression, and MultivariateRegression.
    • Fixed null pointer exception that can happen in K-means with an empty cluster.
    • Fixed name of maxClusters property on AgglomerativeClusterer (was called maxMinDistance).
  • Text:
    • Improvements to LDA Gibbs sampler.

Logo SALSA.jl 0.0.5

by jumutc - September 28, 2015, 17:28:56 CET [ Project Homepage BibTeX Download ] 7565 views, 1907 downloads, 0 subscriptions

About: SALSA (Software lab for Advanced machine Learning with Stochastic Algorithms) is an implementation of the well-known stochastic algorithms for Machine Learning developed in the high-level technical computing language Julia. The SALSA software package is designed to address challenges in sparse linear modelling, linear and non-linear Support Vector Machines applied to large data samples with user-centric and user-friendly emphasis.

Changes:

Initial Announcement on mloss.org.


Logo LMW Tree 1.0

by cdevries - May 30, 2015, 11:42:23 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8622 views, 2024 downloads, 0 subscriptions

About: Learning M-Way Tree - Web Scale Clustering - EM-tree, K-tree, k-means, TSVQ, repeated k-means, clustering, random projections, random indexing, hashing, bit signatures

Changes:

Initial Announcement on mloss.org.


Logo ClusterEval 1.1

by cdevries - May 18, 2015, 22:01:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18257 views, 3736 downloads, 0 subscriptions

About: Cluster quality Evaluation software. Implements cluster quality metrics based on ground truths such as Purity, Entropy, Negentropy, F1 and NMI. It includes a novel approach to correct for pathological or ineffective clusterings called 'Divergence from a Random Baseline'.

Changes:

Moved project to GitHub.


Logo Auto encoder Based Data Clustering Toolkit 1.0

by openpr_nlpr - February 10, 2015, 08:30:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8830 views, 1745 downloads, 0 subscriptions

About: The auto-encoder based data clustering toolkit provides a quick start of clustering based on deep auto-encoder nets. This toolkit can cluster data in feature space with a deep nonlinear nets.

Changes:

Initial Announcement on mloss.org.


Logo Hub Miner 1.1

by nenadtomasev - January 22, 2015, 16:33:51 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16396 views, 3525 downloads, 0 subscriptions

About: Hubness-aware Machine Learning for High-dimensional Data

Changes:
  • BibTex support for all algorithm implementations, making all of them easy to reference (via algref package).

  • Two more hubness-aware approaches (meta-metric-learning and feature construction)

  • An implementation of Hit-Miss networks for analysis.

  • Several minor bug fixes.

  • The following instance selection methods were added: HMScore, Carving, Iterative Case Filtering, ENRBF.

  • The following clustering quality indexes were added: Folkes-Mallows, Calinski-Harabasz, PBM, G+, Tau, Point-Biserial, Hubert's statistic, McClain-Rao, C-root-k.

  • Some more experimental scripts have been included.

  • Extensions in the estimation of hubness risk.

  • Alias and weighted reservoir methods for weight-proportional random selection.


Logo libAGF 0.9.8

by Petey - December 6, 2014, 02:35:39 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 41763 views, 8728 downloads, 0 subscriptions

About: C++ software for statistical classification, probability estimation and interpolation/non-linear regression using variable bandwidth kernel estimation.

Changes:

New in Version 0.9.8:

  • bug fixes: svm file conversion works properly and is more general

  • non-hierarchical multi-borders has 3 options for solving for the conditional probabilities: matrix inversion, voting, and matrix inversion over-ridden by voting, with re-normalization

  • multi-borders now works with external binary classifiers

  • random numbers resolve a tie when selecting classes based on probabilities

  • pair of routines, sort_discrete_vectors and search_discrete_vectors, for classification based on n-d binning (still experimental)

  • command options have been changed with many new additions, see QUICKSTART file or run the relevant commands for details


Logo The Statistical ToolKit 0.8.4

by joblion - December 5, 2014, 13:21:47 CET [ Project Homepage BibTeX Download ] 11739 views, 3057 downloads, 0 subscriptions

About: STK++: A Statistical Toolkit Framework in C++

Changes:

Inegrating openmp to the current release. Many enhancement in the clustering project. bug fix


Showing Items 1-20 of 46 on page 1 of 3: 1 2 3 Next