mloss.org AMIDST Toolboxhttp://mloss.orgUpdates and additions to AMIDST ToolboxenFri, 14 Oct 2016 19:35:27 -0000AMIDST Toolbox 0.6.0http://mloss.org/software/view/651/<html><p>AMiDST is a Java Toolbox for Scalable Probabilistic Machine Learning. </p> <p>In AMiDST, you can model your problem using a flexible probabilistic language based on graphical models. Then, fit it with data using a Bayesian approach to handle modelling uncertainty. </p> <p>AMIDST provides tailored parallel and distributed implementations of Bayesian parameter learning for batch and streaming data (multi-core and distributed processing). This processing is based on flexible and scalable message passing algorithms. </p> <h1>MAIN FEATURES</h1> <ul> <li><p><strong>Probabilistic Graphical Models</strong>: You can specify your model using probabilistic graphical models with latent variables and temporal dependencies. </p> </li> <li><p><strong>Scalable inference</strong>: Perform inference on your probabilistic models with powerful approximate and scalable algorithms based on novel variational message passing schemes. </p> </li> <li><p><strong>Data Streams</strong>: Update your models when new data is available. This makes our toolbox appropriate for learning from (massive) data streams. </p> </li> <li><p><strong>Large-scale Data</strong>: Use your defined models to process massive data sets in a distributed computer cluster using Flink or Spark. </p> </li> <li><p><strong>Extensible</strong>: Code your models or algorithms within AMiDST and expand the toolbox functionalities. Flexible toolbox for researchers performing their experimentation in machine learning. </p> </li> <li><p><strong>Interoperability</strong>: Leverage existing functionalities and algorithms by interfacing to other software tools such as Hugin, MOA, Weka, R, etc. </p> </li> </ul> <h1>PUBLICATIONS: (per year)</h1> <h2>2016</h2> <p>[1] Masegosa, A., R., Martinez, A. M. and Borchani, H. (2016). Probabilistic Graphical Models on Multi-Core CPUs Using Java 8. In IEEE Computational Intelligence Magazine, Vol. 11, No. 2., pages 41-54. DOI: 10.1109/mci.2016.2532267. </p> <p>[2] Masegosa, A. R., Martinez., A. M., Ramos-López, D., Langseth, H., Nielsen, T. D., Salmerón, A., Cabañas, R., and Madsen, A. L. (2016). A Java Toolbox for Analysis of MassIve Data STreams using Probabilistic Graphical Models. Poster. Presented at the European Data Forum. </p> <p>[3] Salmerón, A. Madsen, A.L., Jensen, F., Langseth, H., Nielsen, T. D., Ramos-López, D., Martinez, A. M., and Masegosa, A., R. (2016). Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block Designs. Accepted for ECAI. </p> <p>[4] Madsen, A. L., Jensen, F., Salmeron, A., Langseth, H., Nielsen, T. D. (2016). A Parallel Algorithm for Bayesian Network Structure Learning from Large Data Sets. Accepted for Knowledge-Based Systems. VBN. DOI. </p> <p>[5] Masegosa, A., R., Martinez, A. M., Langseth, H., Nielsen, T. D., Salmeron, A., Ramos-Lopez, D., Madsen, A. L. (2016). d-VMP: Distributed Variational Message Passing. Accepted for PGM. VBN. Online access. </p> <p>[6] Ramos-Lopez, D., Salmeron, A., Rumi, R., Martinez, A. M., Nielsen, T. D., Masegosa, A., R., Langseth, H., Madsen, A. L. (2016). Scalable MAP inference in Bayesian networks based on a Map-Reduce approach. Accepted for PGM. VBN. Online access. </p> <h2>2015</h2> <p>[1] Salmerón, A, Rumi, R., Langseth, H., Madsen, A. L., Nielsen, T. D. (2015). MPE Inference in Conditional Linear Gaussian Networks. In proceedings of ECSQARU on 15-17 July 2015 in Compiegne, France, pages 407-416. DOI: 10.1007/978-3-319-20807-7. </p> <p>[2] Madsen, A. L. and Salmerón, A (2015). Analysis of massive data streams using R and AMIDST. In book of abstracts of useR!2015 on 30 June -3 July 2015 in Aalborg, Denmark, page 171. </p> <p>[3] Borchani, H., Martinez, A. M., Masegosa, A, Langseth, H., Nielsen, T. D., Salmerón, A., Fernández, A., Madsen, A. L., Sáez, R. (2015). Modeling concept drift: A probabilistic graphical model based approach. In proceedings of The Fourteenth International Symposium on Intelligent Data Analysis, 22-24 October 2015 in Saint-Etienne, France, pages 72-83. </p> <p>[4] Salmerón, A., Ramos-López, D., Borchani, H., Martinez, A. M., Masegosa, A., Fernández, A., Langseth, H., Madsen, A. L., Nielsen, T. D. (2015). Parallel importance sampling in conditional linear Gaussian networks. The XVI Conference of the Spanish Association for Artificial Intelligence (CAEPIA'15), pages 36-46. </p> <p>[5] Madsen, A. L., Jensen, F., Salmerón, A., Langseth, H., Nielsen, T. D. (2015). Parallelization of the PC Algorithm (2015). The XVI Conference of the Spanish Association for Artificial Intelligence (CAEPIA'15), pages 14-24. </p> <p>[6] Borchani, H., Martinez, A. M., Masegosa, A, Langseth, H., Nielsen, T. D., Salmerón, A., Fernández, A., Madsen, A. L., Sáez, R (2015). Dynamic Bayesian modeling for risk prediction in credit operations (2015). The 13th Scandinavian Conference on Artificial Intelligence, Halmstad, Sweden, November 5-6, 2015, pages 72-83. </p> <p>[7] Masegosa, A, Martinez, A. M., Borchani, H., Ramos-Lopez, D., Nielsen, T. D., Langseth, H., Salmerón, Madsen, A. L. (2015). AMIDST: Analysis of MassIve Data STreams (2015). In proceedings of The 27th Benelux Conference on Artificial Intelligence, Hasselt, Belgium, November 5-6, 2015. </p></html>Andres R Masegosa, Ana M Martinez, Dario RamosLopez, Hanen Borchani, Antonio Fernandez, Thomas D Nielsen, Helge Langseth, Antonio Salmeron, Anders L Madsen, Rafael CabanasFri, 14 Oct 2016 19:35:27 -0000http://mloss.org/software/rss/comments/651http://mloss.org/software/view/651/approximate inferencebayesian networksdata streamsmulti corebayesian learninghidden markov modelsimportance samplingmaximum likelihoodparallelisationvarational message passingkalma