mloss.org HierLearninghttp://mloss.orgUpdates and additions to HierLearningenSun, 02 Mar 2014 04:24:37 -0000HierLearning 1.0http://mloss.org/software/view/541/<html><p>HierLearning is a C++11 implementation of a general-purpose, multi-agent, hierarchical reinforcement learning system for sequential decision problems. It was created as a platform for HierGen, an algorithm for hierarchical structure discovery in sequential decision problems. </p> <hr /> <h2>Features</h2> <ul> <li> Facilitates the implementation of hierarchical and non-hierarchical learning algorithms. </li> <li> Incorporates multi-agent learning. </li> <li> Facilitates the implementation of sequential decision problems. </li> </ul> <hr /> <h2>Requirements</h2> <p>(The versions that HierLearning has been verified on are mentioned in parentheses.) </p> <ul> <li> Compiler: Visual Studio (2012, v11) or gcc (v4.8.1) </li> <li> Weka (v3.6.5) </li> <li> Python (v2.7) </li> </ul> <p>Optional: * Graphviz (v2.28) <em> Wargus (v2.1) </em> Octave (v3.2.4) </p> <hr /> <h2>Installation</h2> <p>To build binary: make </p> <p>To clean: make clean </p> <hr /> <h2>Usage</h2> <pre><code>hierlearning -h hierlearning -d &lt;domain&gt; -l &lt;learner&gt; [-r &lt;number of runs&gt; -e &lt;number of episodes&gt;] hierlearning -d &lt;domain&gt; -n &lt;number of trajectories&gt; -t &lt;trajectory filename&gt; hierlearning -d &lt;domain&gt; -l &lt;learner&gt; -n &lt;number of trajectories&gt; [-m &lt;model directory&gt;] [-r &lt;number of runs&gt; -e &lt;number of episodes&gt;] hierlearning -d &lt;domain&gt; -l &lt;learner&gt; -t &lt;trajectory file&gt; [-m &lt;model directory&gt;] [-r &lt;number of runs&gt; -e &lt;number of episodes&gt;] </code></pre><hr /> <h2>Examples</h2> <p>To load the manually-designed hierarchy and execute 10 runs of 100 episodes each: hierlearning -d taxi -l maxq -r 10 -e 100 </p> <p>To generate 50 random trajectories: hierlearning -d taxi -n 50 -t trajectory.out </p> <p>To read the trajectory file and generate the task hierarchy based on the supplied models: hierlearning -d taxi -l maxq -t trajectory.out -m models </p> <p>To generate 50 random trajectories, build the task hierarchy, and execute 10 runs of 100 episodes each: hierlearning -d taxi -l maxq -n 50 -r 10 -e 100 </p> <hr /> <h2>Execution</h2> <p>Run on a cluster using qsub: cluster [HTML_REMOVED] [HTML_REMOVED] [HTML_REMOVED] [HTML_REMOVED] [HTML_REMOVED] </p> <p>Process the output (needs Octave): process_results [HTML_REMOVED] [HTML_REMOVED] [HTML_REMOVED] </p></html>Neville MehtaSun, 02 Mar 2014 04:24:37 -0000http://mloss.org/software/rss/comments/541http://mloss.org/software/view/541/markov decision processmultiagent systemhierarchical reinforcement learning