About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods. Changes:Additions and improvements from ELKI 0.7.0 to 0.7.1: Algorithm additions:
Important bug fixes:
UI improvements:
Smaller changes:
|
About: This code is provided by Jun Wan. It is used in the Chalearn one-shot learning gesture challenge (round 2). This code includes: bag of features, 3D MoSIFT-based features (i.e. 3D MoSIFT, 3D EMoSIFT and 3D SMoSIFT), and the MFSK feature. Changes:Initial Announcement on mloss.org.
|
About: Rival is an open source Java toolkit for recommender system evaluation. It provides a simple way to create evaluation results comparable across different recommendation frameworks. Changes:Initial Announcement on mloss.org.
|
About: Open Source Machine Learning Server Changes:
See release notes - https://predictionio.atlassian.net/secure/ReleaseNote.jspa?projectId=10000&version=11801
|
About: MLwizard recommends and optimizes classification algorithms based on meta-learning and is a software wizard fully integrated into RapidMiner but can be used as library as well. Changes:Faster parameter optimization using genetic algorithm with predefined start population.
|
About: The SUMO Toolbox is a Matlab toolbox that automatically builds accurate surrogate models (also known as metamodels or response surface models) of a given data source (e.g., simulation code, data set, script, ...) within the accuracy and time constraints set by the user. The toolbox minimizes the number of data points (which it selects automatically) since they are usually expensive. Changes:Incremental update, fixing some cosmetic issues, coincides with JMLR publication.
|