About: Epistatic miniarray profiles (E-MAPs) are a high-throughput approach capable of quantifying aggravating or alleviating genetic interactions between gene pairs. The datasets resulting from E-MAP experiments typically take the form of a symmetric pairwise matrix of interaction scores. These datasets have a significant number of missing values - up to 35% - that can reduce the effectiveness of some data analysis techniques and prevent the use of others. This project contains nearest neighbor based tools for the imputation and prediction of these missing values. The code is implemented in Python and uses a nearest neighbor based approach. Two variants are used - a simple weighted nearest neighbors, and a local least squares based regression. Changes:Initial Announcement on mloss.org.
|