-
- Description:
libcmaes is a multithreaded C++ (with Python bindings) implementation of the CMA-ES algorithm for stochastic optimization of nonlinear 'blackbox' functions. The implemented algorithms have a wide range of applications in various disciplines, ranging from pure function optimization, optimization in industrial and scientific applications, to the solving of reinforcement and machine learning problems.
Current features include: high-level API for simple use in external applications, implementatio of several flavors of CMA-ES, IPOP-CMA-ES, BIPOP-CMA-ES, active CMA-ES, active IPOP and BIPOP restart strategies, sep-CMA-ES and VD-CMA (linear time & space complexity) along with support for IPOP and BIPOP flavors as well.
Some operations benefit from multicores, and there's support for objective function gradient, when available. A control exe in the command line is provided for running the algorithm over a range of classical single-objective optimization problems.
Full documentation is available from https://github.com/beniz/libcmaes/wiki
Developer API documentation is available from http://beniz.github.io/libcmaes/doc/html/index.html
- Changes to previous version:
Update works around clang bug (e.g. for OSX) and implements uncertainty handling scheme. Main changes:
work around clang bug, now working with clang, ref #19
easier build on OSX
added uncertainty handling scheme for noisy objective functions, ref #65
optional support for surrogates at compile time, reducing the overal lib size, ref #90
fixed uninstall of python bindings
- BibTeX Entry: Download
- Supported Operating Systems: Linux, Windows, Mac Os X
- Data Formats: Any
- Tags: Black Box Optimization, Evolution Strategy, Stochastic Optimization
- Archive: download here
Comments
No one has posted any comments yet. Perhaps you'd like to be the first?
Leave a comment
You must be logged in to post comments.