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Abstract. Similarity and distance functions are essential to many learn-
ing algorithms, thus training them has attracted a lot of interest. When
it comes to dealing with structured data (e.g., strings or trees), edit simi-

larities are widely used, and there exists a few methods for learning them.
However, these methods offer no theoretical guarantee as to the gener-
alization performance and discriminative power of the resulting similari-
ties. Recently, a theory of learning with (ǫ, γ, τ)-good similarity functions

was proposed. This new theory bridges the gap between the properties
of a similarity function and its performance in classification. In this pa-
per, we propose a novel edit similarity learning approach (GESL) driven
by the idea of (ǫ, γ, τ)-goodness, which allows us to derive generalization
guarantees using the notion of uniform stability. We experimentally show
that edit similarities learned with our method induce classification mod-
els that are both more accurate and sparser than those induced by the
edit distance or edit similarities learned with a state-of-the-art method.

Keywords: Edit Similarity Learning, Good Similarity Functions.

1 Introduction

Similarity and distance functions between objects play an important role in
many supervised and unsupervised learning methods, among which the popular
k-nearest neighbors, k-means and support vector machines. For this reason, a lot
of research has gone into automatically learning similarity or distance functions
from data, which is usually referred to as metric learning. When data consists
in numerical vectors, a common approach is to learn the parameters (i.e., the
transformation matrix) of a Mahalanobis distance [1–4].

Because they involve more complex procedures, less work has been devoted to
learning such functions from structured data (for example strings or trees). Still,
there exists a few methods for learning edit distance-based functions. Roughly

⋆ We would like to acknowledge support from the ANR LAMPADA 09-EMER-007-02
project and the PASCAL 2 Network of Excellence.
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speaking, the edit distance between two objects is the cost of the best sequence of
operations (insertion, deletion, substitution) required to transform an object into
another, where an edit cost is assigned to each possible operation. Most general-
purpose methods for learning the edit cost matrix maximize the likelihood of the
data using EM-based iterative methods [5–9], which can imply a costly learning
phase. Saigo et al. [10] manage to avoid this drawback in the context of remote
homologies detection in protein sequences by applying gradient descent to a
specific objective function. Some of the above methods do not guarantee to
find the optimal parameters and/or are only based on a training set of positive
pairs: they do not take advantage of pairs of examples that have different labels.
Above all, none of these methods offer theoretical guarantees that the learned
edit functions will generalize well to unseen examples (while it is the case for
some Mahalanobis distance learning methods [4]) and lead to good performance
for the classification or clustering task at hand.

Recently, Balcan et al. [11, 12] introduced a theory of learning with so-called
(ǫ, γ, τ)-good similarity functions that gives intuitive, sufficient conditions for a
similarity function to allow one to learn well. Essentially, a similarity function
K is (ǫ, γ, τ)-good if an ǫ proportion of examples are on average 2γ more similar
to reasonable examples of the same class than to reasonable examples of the
opposite class, where a τ proportion of examples must be reasonable. K does
not have to be a metric nor positive semi-definite (PSD). They show that if K
is (ǫ, γ, τ)-good, then it can be used to build a linear separator in an explicit
projection space that has margin γ and error arbitrarily close to ǫ. This separator
can be learned efficiently using a linear program and is supposedly sparse.

In this article, we propose a novel edit similarity learning procedure driven
by the notion of good similarity function. Our approach (GESL, for Good Edit
Similarity Learning) is formulated as an efficient convex programming approach
allowing us to learn the edit costs so as to optimize the (ǫ, γ, τ)-goodness of
the resulting similarity function. We provide a bound based on the notion of
uniform stability [13] that guarantees that our learned similarity will generalize
well and induce low-error classifiers. This bound is independent of the size of the
alphabet, making GESL suitable for handling problems with large alphabet. To
the best of our knowledge, this work is the first attempt to establish a theoretical
relationship between a learned edit similarity function and its generalization and
discriminative power. We show in a comparative experimental study that GESL
has fast convergence and leads to more accurate and sparser classifiers than other
edit similarities.

This paper is organized as follows. In Section 2, we introduce a few notations,
and review the theory of Balcan et al. as well as some prior work on edit simi-
larity learning. In Section 3, which is the core of this paper, we present GESL,
our approach to learning good edit similarities. We then propose a theoretical
analysis of GESL based on uniform stability, leading to the derivation of a gen-
eralization bound. An experimental evaluation of our approach is provided in
Section 4. Finally, we conclude this work by outlining promising lines of research
on similarity learning.
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2 Notations and Related Work

We consider the following binary classification problem: we are given some la-
beled examples (x, ℓ) drawn from an unknown distribution P over X × {−1, 1},
where X is the instance space. We want to learn a classifier h : X → {−1, 1}
whose error rate is as low as possible using pairwise similarities according to a
similarity function K : X × X → [−1, 1]. We say that K is symmetric if for all
x, x′ ∈ X, K(x, x′) = K(x′, x). K is a valid (or Mercer) kernel if it is symmetric
and PSD.

2.1 Learning with Good Similarity Functions

In recent work, Balcan et al. [11, 12] introduced a new theory of learning with
good similarity functions. Their motivation was to overcome two major limita-
tions of kernel theory. First, a good kernel is essentially a good similarity func-
tion, but the theory talks in terms of margin in an implicit, possibly unknown
projection space, which can be a problem for intuition and design. Second, the
PSD and symmetry requirement often rules out natural similarity functions for
the problem at hand. As a consequence, Balcan et al. proposed the following
definition of good similarity function.

Definition 1 (Balcan et al. [12]). A similarity function K is an (ǫ, γ, τ)-
good similarity function in hinge loss for a learning problem P if there exists
a (random) indicator function R(x) defining a (probabilistic) set of “reasonable
points” such that the following conditions hold:

1. E(x,ℓ)∼P [[1 − ℓg(x)/γ]+] ≤ ǫ, where g(x) = E(x′,ℓ′)∼P [ℓ′K(x, x′)|R(x′)] and
[1 − c]+ = max(0, 1 − c) is the hinge loss,

2. Prx′ [R(x′)] ≥ τ .

Thinking of this definition in terms of number of margin violations, we can
interpret the first condition as an ǫ proportion of examples x are on average 2γ
more similar to random reasonable examples of the same class than to random
reasonable examples of the opposite class and the second condition as at least a
τ proportion of the examples should be reasonable. Note that other definitions
are possible, like those proposed in [14] for unbounded dissimilarity functions.
Yet Definition 1 is very interesting in two respects. First, it includes all good
kernels as well as some non-PSD similarity functions. In that sense, this is a
strict generalization of the notion of good kernel [12]. Second, these conditions
are sufficient to learn well, i.e., to induce a linear separator α in an explicit space
that has low-error relative to L1-margin γ. This is formalized in Theorem 1.

Theorem 1 (Balcan et al. [12]). Let K be an (ǫ, γ, τ)-good similarity function
in hinge loss for a learning problem P . For any ǫ1 > 0 and 0 ≤ δ ≤ γǫ1/4, let S =

{x′
1, . . . , x

′
d} be a (potentially unlabeled) sample of d = 2

τ

(

log(2/δ) + 16 log(2/δ)
(ǫ1γ)2

)

landmarks drawn from P . Consider the mapping φS : X → R
d defined as follows:
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φS
i (x) = K(x, x′

i), i ∈ {1, . . . , d}. Then, with probability at least 1 − δ over the
random sample S, the induced distribution φS(P ) in R

d has a linear separator
α of error at most ǫ + ǫ1 at margin γ.

Therefore, if we are given an (ǫ, γ, τ)-good similarity function for a learning
problem P and enough (unlabeled) landmark examples, then with high proba-
bility there exists a low-error linear separator α in the explicit “φ-space”, which
is essentially the space of the similarities to the d landmarks. As Balcan et al.
mention, using du unlabeled examples and dl labeled examples, we can efficiently
find this separator α ∈ R

du by solving the following linear program (LP):3

min
α

dl
∑

i=1



1 −
du
∑

j=1

αjℓiK(xi, x
′
j)





+

+ λ‖α‖1. (1)

Note that Problem (1) is essentially a 1-norm SVM problem [15] with an em-
pirical similarity map [11], and can be efficiently solved. The L1-regularization
induces sparsity in α: it allows us to automatically select useful landmarks (the
reasonable points), ignoring the others, whose corresponding coordinates in α

will be set to zero during learning. We can also control the sparsity of the solu-
tion directly: the larger λ, the sparser α. Therefore, one does not need to know
in advance the set of reasonable points R, it is automatically worked out while
learning α.

Our objective in this paper is to make use of the theory of Balcan et al. to
efficiently learn (ǫ, γ, τ)-good edit similarities from data that will lead to effective
classifiers. In the next section, we review some past work on edit cost learning.

2.2 String Edit Similarity Learning

The classic edit distance, known as the Levenshtein distance, is defined as follows.

Definition 2. The Levenshtein distance eL(x, x′) between strings x = x1 . . . xt

and x′ = x′
1 . . . x′

v is the minimum number of edit operations to change x into
x′. The allowable operations are insertion, deletion and substitution of a symbol.

eL can be computed in O(|x| · |x′|) time using dynamic programming. Instead of
only counting the minimum number of required operations, we can set a cost (or
probability) for each edit operation. These parameters are usually represented
as a positive cost matrix C of size (A + 1) × (A + 1), where A is the size of A,
the alphabet x and x′ have been generated from (the additional row and column
account for insertion and deletion costs respectively). Ci,j gives the cost of the
operation changing the symbol ci into cj , ci and cj ∈ A ∪ {$}, where $ is the
empty symbol. Given C, a generalized edit similarity eC can be defined as being
the cost corresponding to the sequence of minimum cost. This sequence is called
the optimal edit script.

3 The original formulation proposed in [12] was actually L1-constrained. We trans-
formed it into an equivalent L1-regularized one.
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Using a matrix C that is appropriately tuned to the considered task can
lead to significant improvements in performance. For some applications, such
matrices may be available, like BLOSUM in the context of protein sequence
alignment [16]. However, in most domains it is not the case, and tuning the costs
is difficult. For this reason, methods for learning C from data have attracted a
lot of interest. Most general-purpose approaches take the form of probabilistic
models. Parameter estimation methods of edit transducers were used to infer
generative models [5, 6, 9], discriminative models [7] or tree edit models [8].

Note that the above approaches usually use an Expectation-Maximization
(EM)-based algorithm to estimate the parameters of probabilistic models. Be-
yond the fact that EM is not guaranteed to converge to a global optimum, it can
also cause two major drawbacks in the context of edit distance learning. First,
since EM is iterative, parameter estimation and distance calculations must be
performed several times until convergence, which can be expensive to compute,
especially when the size of the alphabet and/or the length of the strings are
large. Second, by maximizing the likelihood of the data, one only considers pairs
of strings of the same class (positive pairs) while it may be interesting to make
use of the information brought by pairs of strings that have a different label
(negative pairs). As a consequence, the above methods “move closer together”
examples of the same class, without trying to also “move away from each other”
examples of different class. In [17], McCallum et al. consider discriminative con-
ditional random fields, dealing with positive and negative pairs in specific states,
but still using EM for parameter estimation. To overcome the drawback of itera-
tive approaches for the task of detecting remote homology in protein sequences,
Saigo et al. [10] optimize by gradient descent an objective function meant to fa-
vor the discrimination between positive and negative examples. But this is done
by only using positive pairs of distant homologs.

Despite their diversity, a common feature shared by all of the above ap-
proaches is that they do not optimize similarity functions to be (ǫ, γ, τ)-good
and thus do not take advantage of the theoretical results of Balcan et al.’s
framework. In other words, there is no theoretical guarantee that the learned
edit functions will work well for the classification or clustering task at hand. In
the next section, we propose a novel approach that bridges this gap.

3 Learning (ǫ, γ, τ )-Good Edit Similarity Functions

What makes the edit costs C hard and expensive to optimize is the fact that the
edit distance is based on an optimal script which depends on the edit costs them-
selves. This is the reason why, as we have seen earlier, iterative approaches are
very commonly used to learn C from data. In this section, we take a novel convex
programming approach based on the theory of Balcan et al. to learn (ǫ, γ, τ)-
good edit similarity functions from both positive and negative pairs without
requiring a costly iterative procedure. Moreover, this new framework allows us
to derive a generalization bound establishing the convergence of our method and
a relationship between the learned similarities and their (ǫ, γ, τ)-goodness.
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3.1 An Exponential-based Edit Similarity Function

Let #(x, x′) be a (A + 1) × (A + 1) matrix whose each component #i,j(x, x′)
is the number of times the edit operation (i, j) is used to turn x into x′ in the
optimal Levenshtein script, 0 ≤ i, j ≤ A. We define the following edit function:

eG(x, x′) =
∑

0≤i,j≤A

Ci,j#i,j(x, x′).

Note that to compute eG, we do not extract the optimal script with respect to
C: we use the Levenshtein script4 and apply custom costs C to it. Therefore,
since the edit script defined by #(x, x′) is fixed, eG(x, x′) is nothing more than
a linear function of the edit costs and can be optimized directly.

Recall that in the framework of Balcan et al., a similarity function must be
in [−1, 1]. To respect this requirement, we define our similarity function to be:

KG(x, x′) = 2e−eG(x,x′) − 1.

The motivation for this exponential form is related to the one for using exponen-
tial kernels in SVM classifiers: it can be seen as a way to introduce nonlinearity
to further separate examples of opposite class while moving closer those of the
same class. Note that KG may not be PSD nor symmetric. However, as we have
seen earlier, Balcan et al.’s theory does not require these properties, unlike SVM.

3.2 Learning the Edit Costs: Problem Formulation

We aim at learning an edit cost matrix C so as to optimize the (ǫ, γ, τ)-goodness
of KG. It would be tempting to try to find a way to directly optimize Definition
1. Unfortunately, this is very difficult for two reasons. First, it would result in
a nonconvex formulation (summing/subtracting up exponential terms). Second,
we do not know the set R of reasonable points in advance (R is inferred when
learning the classifier). Instead, we propose to optimize the following criterion:

E(x,ℓ)

[

E(x′,ℓ′)

[

[1 − ℓℓ′KG(x, x′)/γ]+ |R(x′)
]]

≤ ǫ′. (2)

Criterion (2) bounds that of Definition 1 due to the convexity of the hinge loss.
It is harder to satisfy since the “goodness” is required with respect to each
reasonable point instead of considering the average similarity to these points.
Clearly, if KG satisfies (2), then it is (ǫ, γ, τ)-good with ǫ ≤ ǫ′.

Let us consider a training sample of NT labeled points T = {zi = (xi, ℓi)}NT

i=1

and a sample of landmark examples SL = {z′j = (x′
j , ℓ

′
j)}NL

j=1. Note that these
examples must be labeled in order to allow us to move closer examples of the
same class and to separate points of opposite class. In practice, SL can be a
subsample of the training sample T . Recall that the goodness of a similarity only

4 In practice, one could use another type of script. We picked the Levenshtein script
because it is a “reasonable” edit script, since it corresponds to a shortest script
transforming x into x′.
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relies on some relevant subset of examples: the reasonable points. Therefore, in
the general case, a relevant strategy does not consist in optimizing the similarity
with respect to all the landmarks, but rather to some particular ones allowing a
high margin with low violation. In order to model this, we suppose the existence
of an indicator matching function fland : T ×SL → {0, 1} that associates to each
element x ∈ T a non empty set of landmark points. We say that x′ ∈ SL is a
landmark point for x ∈ T if and only if fland(x, x′) = 1. We suppose that fland

matches exactly NL landmark points to each x ∈ T . We will discuss in Section
3.4 how we can build fland.

Our formulation requires the goodness for each (xi, x
′
j) with fland(xi, x

′
j) = 1.

Therefore, we want
[

1 − ℓiℓ
′
jKG(xi, x

′
j)/γ

]

+
= 0, hence ℓiℓ

′
jKG(xi, x

′
j) ≥ γ. A

benefit from using this constraint is that it can easily be turned into an equivalent
linear one, considering the following two cases.

1. If ℓi 6= ℓ′j , we get:

−KG(xi, x
′
j) ≥ γ ⇐⇒ e−eG(xi,x

′

j) ≤ 1 − γ

2
⇐⇒ eG(xi, x

′
j) ≥ − log(

1 − γ

2
).

We can use a variable B1 ≥ 0 and write the constraint as eG(xi, x
′
j) ≥ B1,

with the interpretation that B1 = − log(1−γ
2 ). In fact, B1 ≥ − log(1

2 ).

2. Likewise, if ℓi = ℓ′j , we get eG(xi, x
′
j) ≤ − log(1+γ

2 ). We can use a variable
B2 ≥ 0 and write the constraint as eG(xi, x

′
j) ≤ B2, with the interpretation

that B2 = − log(1+γ
2 ). In fact, B2 ∈

[

0,− log(1
2 )
]

.

The optimization problem GESL can then be expressed as follows:

(GESL) min
C,B1,B2

1
NT NL

∑

1≤i≤NL,
1≤j≤NT ,

fland(xi,x
′

j)=1

V (C, zi, z
′
j) + β‖C‖2

s.t. V (C, zi, z
′
j) =

{

[B1 − eG(xi, x
′
j)]+ if ℓi 6= ℓ′j

[eG(xi, x
′
j) − B2]+ if ℓi = ℓ′j

B1 ≥ − log(1
2 ), 0 ≤ B2 ≤ − log(1

2 ), B1 − B2 = ηγ

Ci,j ≥ 0, 0 ≤ i, j ≤ A,

where β ≥ 0 is a regularization parameter on edit costs, ‖·‖ denotes the Frobenius
norm (which corresponds to the classical L2-norm when considering a matrix as
a n× n vector) and ηγ ≥ 0 a parameter corresponding to the desired “margin”.
The relationship between the margin γ and ηγ is given by γ = eηγ −1

eηγ +1 .
GESL is a convex program, thus we can efficiently find its global optimum.

Using slack variables to express the hinge loss, it has O(NT NL + A2) variables
and O(NT NL) constraints. Note that GESL is quite sparse: each constraint
involves at most one string pair and a limited number of edit cost variables,
making the problem faster to solve. It is also worth noting that our approach is
very flexible. First, it is general enough to be used with any definition of eG that
is based on an edit script (or even a convex combination of edit scripts). Second,
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one can incorporate additional convex constraints, which offers the possibility of
including background knowledge or desired requirements on C (e.g., symmetry).
Lastly, it can be easily adapted to the multi-class case.

In the next section, we derive a generalization bound guaranteeing not only
the convergence of our learning method but also the overall goodness of the
learned edit similarity function for the task at hand.

3.3 Theoretical Guarantees

The outline of this theoretical part is the following: considering that the pairs
(zi, z

′
j) used to learn C in GESL are not i.i.d., the classic results of statistical

learning theory do not directly hold. To derive a generalization bound, extending
the ideas of [4, 13] to string edit similarity, we first prove that our learning method
has a uniform stability. This is established in Theorem 2 using Lemma 1 and 2.
The stability property allows us to derive our generalization bound (Theorem 4)
using the McDiarmid inequality (Theorem 3).

In the following, we suppose every string length bounded by a constant
W > 0, which is not a strong restriction. This implies that for any string pair,
‖#(x1, x2)‖ ≤ W ,5 since the Levenshtein script contains at most max(|x1|, |x2|)
operations. We denote the objective function of GESL by:

FT (C) =
1

NT

NT
∑

k=1

1

NL

NL
∑

j=1

V (C, zk, z′kj
) + β‖C‖2,

where z′kj
denotes the jth landmark associated to zk.

The first term of FT (C), noted LT (C) in the following, is the empirical loss
over the training sample T . Let us also define the loss over the true distribution
P , called L(C), and the estimation error DT as follows:

L(C) = Ezk,z′

j
[V (C, zk, z′j)] ; DT = L(CT ) − LT (CT ),

where CT denotes the edit cost matrix learned by GESL from sample T . Our
objective is to derive an upper bound on the generalization loss L(CT ) with
respect to the empirical loss LT (CT ).

A learning algorithm is stable [13] when its output does not change sig-
nificantly under a small modification of the learning sample. We consider the
following definition of uniform stability meaning that the replacement of one
example must lead to a variation bounded in O(1/NT ) in terms of infinite norm.

Definition 3 (Jin et al. [4], Bousquet and Elisseeff [13]). A learning al-
gorithm has a uniform stability in κ

NT
, where κ is a positive constant, if

∀(T, z), |T | = NT ,∀i, sup
z1,z2

|V (CT , z1, z2) − V (CT i,z , z1, z2)| ≤
κ

NT
,

where T i,z is the new set obtained by replacing zi ∈ T by a new example z.

5 Also denoted ‖#(z1, z2)‖ for the sake of convenience when using labeled strings.
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To prove that GESL has the property of uniform stability, we need the following
two lemmas (proven in Appendices 1 and 2).

Lemma 1. For any edit cost matrices C,C ′ and any examples z, z′:

|V (C, z, z′) − V (C ′, z, z′)| ≤ ‖C − C ′‖W.

Lemma 2. Let FT and FT i,z be the functions to optimize, CT and CT i,z their
corresponding minimizers, and β the regularization parameter. Let ∆C = (CT −
CT i,z ). For any t ∈ [0, 1]:

‖CT ‖2 − ‖CT − t∆C‖2 + ‖CT i,z‖2 − ‖CT i,z + t∆C‖2 ≤ (2NT + NL)t2W

βNT NL
‖∆C‖.

Using Lemma 1 and 2, we can now prove the stability of GESL.

Theorem 2. Let NT and NL be respectively the number of training examples
and landmark points. Assuming that NL = αNT , α ∈ [0, 1], GESL has a uniform

stability in κ
NT

, where κ = 2(2+α)W 2

βα .

Proof. Using t = 1/2 on the left-hand side of Lemma 2, we get

‖CT ‖2 − ‖CT − 1

2
∆C‖2 + ‖CT i,z‖2 − ‖CT i,z +

1

2
∆C‖2 =

1

2
‖∆C‖2.

Then, applying Lemma 2, we get

‖∆C‖2 ≤ 2(2NT + NL)W

βNT NL
‖∆C‖ ⇒ ‖∆C‖ ≤ 2(2NT + NL)W

βNT NL
.

Now, from Lemma 1, we have for any z, z′

|V (CT , z, z′) − V (CT i,z , z, z′)| ≤ ‖∆C‖W ≤ 2(2NT + NL)W 2

βNT NL
.

Replacing NL by αNT completes the proof. �

Now, using the property of stability, we can derive our generalization bound over
L(CT ). This is done by using the McDiarmid inequality [18].

Theorem 3 (McDiarmid inequality [18]). Let X1, . . . ,Xn be n independent
random variables taking values in X and let Z = f(X1, . . . ,Xn). If for each
1 ≤ i ≤ n, there exists a constant ci such that

sup
x1,...,xn,x′

i∈X

|f(x1, . . . , xn) − f(x1, . . . , x
′
i, . . . , xn)| ≤ ci,∀1 ≤ i ≤ n,

then for any ǫ > 0, Pr[|Z − E[Z]| ≥ ǫ] ≤ 2 exp

( −2ǫ2
∑n

i=1 c2
i

)

.
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To derive our bound on L(CT ), we just need to replace Z by DT in Theorem 3
and to bound ET [DT ] and |DT −DT i,z |, which is shown by the following lemmas
(proven in Appendices 3 and 5).

Lemma 3. For any learning method of estimation error DT and satisfying a
uniform stability in κ

NT
, we get ET [DT ] ≤ 2κ

NT
.

Lemma 4. For any edit cost matrix learned by GESL using NT training exam-
ples and NL landmarks, with Bγ = max(ηγ ,−log(1/2)), we have the following
bound:

∀i, 1 ≤ i ≤ NT , ∀z, |DT − DT i,z | ≤ 2κ

NT
+

(2NT + NL)( 2W√
βBγ

+ 3)Bγ

NT NL
.

We are now able to derive our generalization bound over L(CT ).

Theorem 4. Let T be a sample of NT randomly selected training examples and
let CT be the edit costs learned by GESL with stability κ

NT
using NL = αNT

landmark points. With probability 1− δ, we have the following bound for L(CT ):

L(CT ) ≤ LT (CT ) + 2
κ

NT
+

(

2κ +
2 + α

α

(

2W
√

βBγ

+ 3

)

Bγ

)

√

ln(2/δ)

2NT

with κ = 2(2+α)W 2

αβ and Bγ = max(ηγ ,−log(1/2)).

Proof. Recall that DT = L(CT ) − LT (CT ). From Lemma 4, we get

|DT−DT i,z | ≤ sup
T,z′

|DT−DT i,z′ | ≤ 2κ + B

NT
with B =

(2 + α)

α

(

2W
√

βBγ

+ 3

)

Bγ .

Then by applying the McDiarmid inequality, we have

Pr[|DT −ET [DT ]| ≥ ǫ] ≤ 2 exp



− 2ǫ2
∑NT

i=1
(2κ+B)2

N2

T



 ≤ 2 exp

(

− 2ǫ2

(2κ+B)2

NT

)

. (3)

By fixing δ = 2 exp
(

− 2ǫ2

(2κ+B)2/NT

)

, we get ǫ = (2κ + B)
√

ln(2/δ)
2NT

. Finally, from

(3), Lemma 3 and the definition of DT , we have with probability at least 1− δ:

DT < ET [DT ] + ǫ ⇒ L(CT ) < LT (CT ) + 2
κ

NT
+ (2κ + B)

√

ln(2/δ)

2NT
. �

This bound outlines three important features of our approach. First, it has a

convergence in O(
√

1
NT

), which is classical with the notion of uniform stability.

Second, this rate of convergence is independent of the alphabet size, which means
that our method should scale well to large alphabet problems. Lastly, thanks to
the relation between the optimized criterion and Definition 1 that we established
earlier, this bound also ensures the goodness in generalization of the learned
similarity function. Therefore, by Theorem 1, it guarantees that the similarity
will induce low-error classifiers for the classification task at hand.
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3.4 Discussion on the matching function

The question of how one should define the matching function fland relates to the
open question of building the training pairs in many metric or similarity learning
problems. In some applications, it may be trivial: e.g., a misspelled word and its
correction. Otherwise, popular choices are to pair each example with its nearest
neighbor or to consider all possible pairs. In our case, matching each example
with every landmark may result in a similarity function that performs very
poorly, because requiring the goodness over all landmarks (including irrelevant
ones) defines an over-constrained problem and does not capture the essence of
Definition 1. Remember that on average, examples should be more similar to
reasonable points of the same class than to reasonable points of the opposite
class. In that sense, reasonable points “represent” the data well. Since classes
have intra-class variability, a given reasonable point can only account for a subset
of the data. Therefore, reasonable points must be somewhat complementary.

Keeping this in mind, we propose the following strategy, used in the experi-
ments. Assuming an even distribution of classes in T , we use a positive parameter
P ≤ NT /2 to pair each example with its P nearest neighbors of the same class in
T and its P farthest neighbors of the opposite class in T , using the Levenshtein
distance. Therefore, we have NL = 2P with NL = αNT , 0 < α ≤ 1 (where α is
typically closer to 0 than to 1). In other words, we essentially take a few land-
marks that are already good representatives of a given example and optimize
the edit costs so that they become even better representatives. Note that the
choice of the Levenshtein distance to determine the neighbors is consistent with
our choice to define eG according to the Levenshtein script.

4 Experimental Results

In this section, we provide an experimental evaluation of the approach presented
in Section 3. Using the learning rule (1) of Balcan et al., we compare three edit
similarity functions:6 (i) KG, learned by GESL,7 (ii) the Levenshtein distance
eL, and (iii) an edit similarity function pe learned with the method of Oncina
and Sebban [7].8 The task is to learn a model to classify words as either English
or French. We use the 2,000 top words lists from Wiktionary.9

First, we assess the convergence rate of the two considered edit cost learn-
ing methods (i and iii). We keep aside 600 words as a validation set to tune
the parameters, using 5-fold cross-validation and selecting the value offering the

6 A similarity function that is not in [−1, 1] can be normalized.
7 In this series of experiments, we constrained the cost matrices to be symmetric in

order not to be dependent on the order in which the examples are considered.
8 We used their software SEDiL, available online at http://labh-curien.

univ-st-etienne.fr/SEDiL/
9 These lists are available at http://en.wiktionary.org/wiki/Wiktionary:

Frequency_lists. We only considered unique words (i.e., not appearing in both
lists) of length at least 4, and we also got rid of accent and punctuation marks. We
ended up with about 1,300 words of each language over an alphabet of 26 symbols.
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Fig. 1. Learning the costs: accuracy and sparsity results with respect to NT .

best classification accuracy. We build bootstrap samples T from the remaining
2,000 words to learn the edit costs, as well as 600 words to train the separator α

and 400 words to test its performance. Figure 1 shows the accuracy and sparsity
results of each method with respect to NT , averaged over 5 runs. We see that
KG leads to more accurate models than eL and pe for every size NT > 20. The
difference is statistically significant: the Student’s t-test yields p < 0.01. At the
same time, KG requires considerably less reasonable points (thus speeding up
classification). This clearly indicates that GESL leads to a better similarity than
(ii) and (iii). Moreover, the convergence rate of GESL is very fast, considering
that (26+1)2 = 729 costs must be learned: it needs very few examples to outper-
form the Levenshtein distance, and about 200 examples to reach convergence.
This provides experimental evidence that our method scales well with the size
of the alphabet, as suggested by the generalization bound derived in Section
3.3. On the other hand, (iii) seems to suffer from the large number of costs to
estimate: it needs a lot more examples to outperform Levenshtein (about 200)
and convergence seems to be only reached at 1,000.

Now, we assess the performance of the three edit similarities with respect
to the number of examples dl used to learn the separator α. For KG and pe,
we use the matrix that performed best in the previous experiment. Taking our
set of 2,000 words, we keep aside 400 examples to test the models and build
bootstrap samples from the remaining 1,600 words to learn α. Figure 2 shows
the accuracy and sparsity results of each method with respect to dl, averaged
over 5 runs. Again, KG outperforms eL and pe for every size dl (the difference
is statistically significant with p < 0.01 using a Student’s t-test) while always
leading to much sparser models. Moreover, the size of the models induced by
KG stabilizes for dl ≥ 400 while the accuracy still increases. This is not the case
for the models induced by eL and pe, whose size keeps growing. To sum up, the
best matrix learned by GESL outperforms the best matrix learned by [7], which
had been proven to perform better than other state-of-the-art methods.

Finally, one may wonder what kind of words are selected as reasonable points
in the models. The intuition is that they should be some sort of “discriminative
prototypes” the classifier is based on. Table 1 gives an example of a set of 11



Learning Good Edit Similarities with Generalization Guarantees 13

 55

 60

 65

 70

 75

 80

 0  200  400  600  800  1000  1200  1400  1600

dl

C
la

ss
ifi

ca
ti

o
n

a
cc

u
ra

cy

eL

pe

KG

 0

 50

 100

 150

 200

 250

 0  200  400  600  800  1000  1200  1400  1600

dl

M
o
d
el

si
ze

eL

pe

KG

Fig. 2. Learning the separator: accuracy and sparsity results with respect to dl.

English French

high showed holy economiques americaines decouverte

liked hardly britannique informatique couverture

Table 1. Example of a set of 11 reasonable points.

reasonable points obtained with KG using a set of 1,200 examples to learn α.10

This small set actually carries a lot of discriminative patterns (shown in Table
2 along with their number of occurrences in each class over the entire dataset).
For example, words ending with ly correspond to English words, while those
ending with que characterize French words. Note that Table 1 also reflects the
fact that English words are shorter on average (6.99) than French words (8.26)
in the dataset, but the English (resp. French) reasonable points are significantly
shorter (resp. longer) than the average (mean of 5.00 and 10.83 resp.), which
allows better discrimination.

5 Conclusion and Future Work

In this work, we proposed a novel approach to the problem of learning edit sim-
ilarities from data that induces (ǫ, γ, τ)-goodness. We derived a generalization
bound using the notion of uniform stability that is independent from the size of
the alphabet, making it suitable for problems involving large vocabularies. This

10 We used a high λ value in order to get a small set, thus making the analysis easier.

w y k q nn gh ai ed$ ly$ es?$ ques?$ ^h

English 146 144 83 14 5 34 39 151 51 265 0 62

French 7 19 5 72 35 0 114 51 0 630 43 14
Table 2. Some discriminative patterns extracted from the reasonable points of Table
1 (^: start of word, $: end of word, ?: 0 or 1 occurrence of preceding letter).
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bound is related to the goodness of the resulting similarity, which gives guar-
antees that the similarity will induce accurate models for the task at hand. We
experimentally showed that it is indeed the case and that the induced models
are also sparser than if we use other (standard or learned) edit similarities. Our
approach is flexible enough to be straightforwardly generalized to tree edit sim-
ilarity learning: one just has to redefine eG to be a tree edit script. Considering
that tree edit distances generally run in cubic time and that the methods for
learning tree edit similarities available in the literature are mostly EM-based
(thus requiring the distances to be recomputed many times), this seems a very
promising avenue to explore. Finally, learning (ǫ, γ, τ)-good Mahalanobis dis-
tance could also be considered.

A Appendices

A.1 Proof of Lemma 1

Proof. |V (C, z, z′) − V (C ′, z, z′)| ≤ |
∑

0≤i,j≤A(Ci,j − C ′
i,j)#i,j(z, z′)| ≤ ‖C −

C ′‖‖#(z, z′)‖. The first inequality uses the 1-lipschitz property of the hinge
loss and the fact that B1’s and B2’s cancel out. The second one comes from the
Cauchy-Schwartz inequality.11 Finally, since ‖#(z, z′)‖ ≤ W , the lemma holds.�

A.2 Proof of Lemma 2

Proof. Let B = LT (CT +t∆C)−LT i,z (CT +t∆C)−(LT (CT )−LT i,z (CT )). Since
LT , FT , LT i,z and FT i,z are convex functions and using the fact that CT and
CT i,z are minimizers of FT and FT i,z respectively, we get12 for any t ∈ [0, 1]:

β
`

‖CT ‖
2 − ‖CT − t∆C‖2 + ‖CT i,z‖

2 − ‖CT i,z + t∆C‖2
´

≤ B.

Then, using the previous upper bound B, we get

B ≤ |LT (CT + t∆C) − LT i,z (CT + t∆C) + LT i,z (CT ) − LT (CT )|

≤
2(NT − 1) + NL

NT NL

sup
z1,z2∈T

z3,z4∈T i,z

|V (CT + t∆C, z1, z2) − V (CT , z1, z2) +

V (CT , z3, z4) − V (CT + t∆C, z3, z4)|

≤
2(NT − 1) + NL

NT NL

t‖∆C‖ sup
z1,z2∈T

z3,z4∈T i,z

(‖#(z1, z2)‖ + ‖#(z3, z4)‖)

≤
(2NT + NL)t2W

NT NL

‖∆C‖.

The second line is obtained by the fact that every zk in T , zk 6= zi, has at most
two landmark points different between T and T i,z, and z and zi at most NL

different landmarks. To complete the proof, we reorder the terms and use the 1-
lipschitz property, Cauchy-Schwartz, triangle inequalities and ‖#(z, z′)‖ ≤ W .�

11 1-lipschitz implies |[X]+− [Y ]+| ≤ |X−Y |, Cauchy-Schwartz |
Pn

i=1
xiyi| ≤ ‖x‖‖y‖.

12 Due to the limitation of space, the details of this construction are not presented in
this paper. We advise the interested reader to have a look at Lemma 20 in [13].
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A.3 Proof of Lemma 3

Proof. ET [DT ] ≤ ET [Ez,z′ [V (CT , z, z′)] − LT (CT )]

≤ ET,z,z′ [|V (CT , z, z
′) −

1

NT

NT
X

k=1

1

NL

NL
X

j=1

V (CT , zk, z
′

kj
)|]

≤ ET,z,z′ [|
1

NT

NT
X

k=1

(V (CT , z, z
′)−V (CT , zk, z

′)+V (CT , zk, z
′)−

1

NL

NL
X

j=1

V (CT , zk, z
′

kj
))|].

Since, T, z and z′ are i.i.d. from distribution P , we do not change the expected
value by replacing one point with another and thus

ET,z,z′ [|V (CT , z, z
′) − V (CT , zk, z

′)|] = ET,z,z′ [|V (CT , z, z
′) − V (CT k,z , z, z

′)|].

It suffices to apply this trick twice, combined with the triangle inequality and
the property of stability in κ

NT
to lead to the lemma. �

A.4 Lemma 5

In order to bound |DT − DT i,z |, we need to bound ‖CT ‖.
Lemma 5. Let (CT , B1, B2) an optimal solution learned by GESL from a sam-

ple T , and let Bγ = max(ηγ ,−log(1/2)), then ‖CT ‖ ≤
√

Bγ

β .

Proof. Since (CT , B1, B2) is an optimal solution then the value reached by FT

is lower than the one obtained with (0, Bγ , 0), where 0 denotes the null matrix:

NT
X

k=1

1

NT

NL
X

j=1

1

NL

V (C, zk, z
′

kj
) + β‖CT ‖

2 ≤

NT
X

k=1

1

NT

NL
X

j=1

1

NL

V (0, zk, z
′

kj
) + β‖0‖2 ≤ Bγ .

For the last inequality, note that V (0, zk, z′kj
) is bounded either by Bγ or 0.

Since
∑NT

k=1
1

NT

∑NL

j=1
1

NL
V (C, zk, z′kj

) ≥ 0, we get β‖CT ‖2 ≤ Bγ . �

A.5 Proof of Lemma 4

Proof. First, we derive a bound on |DT − DT i,z |.
|DT − DT i,z | = |L(CT ) − LT (CT ) − (L(CT i,z ) − LT i,z (CT i,z ))|

≤ |L(CT ) − L(CT i,z )| + |LT (CT i,z ) − LT (CT )| + |LT i,z (CT i,z ) − LT (CT i,z )|

≤ Ez1,z2
[|V (CT , z1, z2) − V (CT i,z , z1, z2)|] +

1

NT

NT
X

k=1

1

NL

NL
X

j=1

|V (CT i,z , zk, z
′

kj
) − V (CT , zk, z

′

kj
)| + |LT i,z (CT i,z ) − LT (CT i,z )|

≤ 2
κ

NT

+ |LT i,z (CT i,z ) − LT (CT i,z )|. (by using the hypothesis of stability twice)

Now, proving Lemma 4 boils down to bounding the last term above. Using
similar arguments to the proof of Lemma 2,

|LT i,z (CT i,z )−LT (CT i,z )| ≤
(2NT + NL)

NT NL

sup
z1,z2∈T

z3,z4∈T i,z

|V (CT i,z , z1, z2)−V (CT i,z , z3, z4)|.
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We study two cases that need the 1-lipschtiz property of hinge loss and Lemma 5.

If ℓz1
ℓz2

= ℓz3
ℓz4

, |V (CT i,z , z1, z2) − V (CT i,z , z3, z4)| ≤
√

Bγ

β W . Otherwise, if

ℓz1
ℓz2

6= ℓz3
ℓz4

, note that |B1 + B2| = ηγ + 2B2 ≤ 3Bγ . Hence we get

|V (CT i,z , z1, z2) − V (CT i,z , z3, z4)| ≤

r

Bγ

β
2W + 3Bγ . �
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