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Abstract Similarity functions are a fundamental component of many learning
algorithms. When dealing with string or tree-structured data, measures based
on the edit distance are widely used, and there exist a few methods for learning
them from data. However, these methods offer no theoretical guarantee as to
the generalization ability and discriminative power of the learned similarities.
In this paper, we propose an approach to edit similarity learning based on loss
minimization, called GESL. It is driven by the notion of (ǫ, γ, τ)-goodness,
a theory that bridges the gap between the properties of a similarity function
and its performance in classification. Using the notion of uniform stability, we
derive generalization guarantees that hold for a large class of loss functions.
We also provide experimental results on two real-world datasets which show
that edit similarities learned with GESL induce more accurate and sparser
classifiers than other (standard or learned) edit similarities.

Keywords Similarity Learning · Edit Distance · Good Similarity Function ·
Loss Minimization

1 Introduction

Using an appropriate pairwise similarity or distance function is key to many
supervised and unsupervised learning methods, among which the popular k-
Nearest Neighbors, K-Means and Support Vector Machines. For this reason, a
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lot of research has gone into automatically learning them from data, which is
often referred to as similarity learning. When data is made of vectors in R

n,
a common approach is to learn the transformation matrix of a Mahalanobis
distance (Yang and Jin, 2006; Davis et al, 2007; Weinberger and Saul, 2009; Jin
et al, 2009; Bian and Tao, 2011). Some of these methods have nice statistical
properties that allow the derivation of generalization bounds, ensuring the
good behavior of the resulting similarity function on unseen data (Jin et al,
2009; Bian and Tao, 2011).

However, in many cases (such as in natural language processing, bioinfor-
matics or web document classification, among others), data may be string or
tree-structured and one needs similarity measures that take into account this
structure. In this context, edit distance-based similarity functions are widely
used by practitioners. Roughly speaking, the edit distance between two objects
is the cost of the best sequence of operations (insertion, deletion, substitution
of a symbol) required to transform an object into another, where an edit cost
is assigned to each possible operation. Although they involve complex proce-
dures, there exist a few methods for learning edit similarities (i.e., learning
the edit costs) for a given task. Most general-purpose methods maximize the
likelihood of the data using EM-like iterative algorithms (Ristad and Yianilos,
1998; Bilenko and Mooney, 2003; McCallum et al, 2005; Oncina and Sebban,
2006; Bernard et al, 2008; Mehdad, 2009; Takasu, 2009), which can imply a
costly learning phase. Saigo et al (2006) manage to avoid this drawback in the
context of remote homologies detection in protein sequences by applying gra-
dient descent to a specific objective function. Unfortunately, these approaches
share several drawbacks. Some of them do not guarantee to find the optimal
parameters and/or are based on a training set of positive pairs only: they do
not take advantage of pairs of examples that have different labels. Above all,
the generalization ability of the resulting edit similarity is not guaranteed, and
it is therefore unclear whether it will actually lead to better performance for
the classification or clustering task at hand.

Recently, Balcan et al (2006; 2008) introduced a theory of learning with
so-called (ǫ, γ, τ)-good similarity functions that gives intuitive, sufficient condi-
tions for a similarity function to allow one to learn well. Essentially, a similarity
function K is (ǫ, γ, τ)-good if a 1 − ǫ proportion of examples are on average
2γ more similar to reasonable examples of the same class than to reasonable
examples of the opposite class, where a τ proportion of examples must be
reasonable. K does not have to be a metric nor positive semi-definite (PSD).
They show that if K is (ǫ, γ, τ)-good, then it can be used to build a linear
separator in an explicit projection space that has margin γ and error arbitrar-
ily close to ǫ. This separator can be learned efficiently using a linear program
and tends to be sparse thanks to L1-norm regularization. The work of Bellet
et al (2011a) has experimentally shown that this framework is well suited to
the use of edit similarities.

In this article, we propose a new framework for learning edit similarities
which addresses the drawbacks of other methods in the literature. Our ap-
proach (GESL, for Good Edit Similarity Learning) is driven by the idea of
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(ǫ, γ, τ)-goodness: we learn the edit costs so as to optimize the goodness of the
resulting similarity function. It is based on loss minimization and formulated
as an efficient convex program. We provide an extensive theoretical study of
the properties of GESL based on the notion of uniform stability (Bousquet
and Elisseeff, 2002) leading to the derivation of a generalization bound that
holds for a large class of loss functions. This bound guarantees that our learned
similarity will induce low-error classifiers for the task at hand and is indepen-
dent of the size of the alphabet, making GESL suitable for handling problems
with large alphabet. To the best of our knowledge, this constitutes the first
attempt to establish a theoretical relationship between a learned edit simi-
larity function and its generalization and discriminative power. We show in a
comparative experimental study on two real-world datasets that GESL has
fast convergence and leads to more accurate and sparser classifiers than other
(standard or learned) edit similarities.

This paper builds upon an earlier conference paper (Bellet et al, 2011b),
which was a first attempt at learning edit similarity functions so as to op-
timize their (ǫ, γ, τ)-goodness. This journal version presents these previous
results with detailed explanations, more extensive experiments and improved
presentation. It also features several new contributions: the extension of our
method to general loss functions, its adaptation to tree-structured data and
the generalization of our theoretical analysis to examples of unbounded size.

This paper is organized as follows. In Section 2, we introduce some back-
ground and notations, focusing on the theory of (ǫ, γ, τ)-goodness and the
notion of edit distance. Section 3 reviews some prior work on string edit sim-
ilarity learning. In Section 4, we present GESL, our approach to learning
(ǫ, γ, τ)-good edit similarities. We show that it is a suitable way to deal not
only with strings but also with tree-structured data. We propose in Section 5 a
theoretical analysis of GESL based on uniform stability, leading to the deriva-
tion of a generalization bound that holds for a large class of loss functions. We
also provide a discussion on that bound and its implications, as well as a way
of deriving a bound when dealing with examples of unbounded size. A wide ex-
perimental evaluation of our approach on two real-world string datasets from
the natural language processing and image classification domains is provided
in Section 6. Finally, we conclude this work by outlining promising lines of
research on similarity learning.

2 Background

We consider the following binary classification problem: we are given some
labeled examples z = (x, ℓ) drawn from an unknown distribution P over X ×
{−1, 1}, where X is the instance space. We want to learn a classifier h :
X → {−1, 1} whose error rate is as low as possible using pairwise similarities
according to a similarity function K : X × X → [−1, 1]. We say that K is
symmetric if for all x, x′ ∈ X, K(x, x′) = K(x′, x). K is a valid (or Mercer)
kernel if it is symmetric and PSD.
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2.1 Learning with Good Similarity Functions

In recent work, Balcan et al (2006; 2008) introduced a new theory of learning
with good similarity functions. Their motivation was to overcome two major
limitations of kernel theory. First, a good kernel is essentially a good similarity
function, but the theory talks in terms of margin in an implicit, possibly
unknown projection space, which can be a problem for intuition and design.
Second, the PSD and symmetry requirement often rules out natural similarity
functions for the problem at hand. As a consequence, Balcan et al (2008)
proposed the following definition of good similarity function.

Definition 1 (Balcan et al, 2008) A similarity function K : X × X →
[−1, 1] is an (ǫ, γ, τ)-good similarity function for a learning problem P if there
exists a (random) indicator function R(x) defining a (probabilistic) set of “rea-
sonable points” such that the following conditions hold:

1. A 1 − ǫ probability mass of examples (x, ℓ) satisfy

E(x′,ℓ′)∼P [ℓℓ′K(x, x′)|R(x′)] ≥ γ.

2. Prx′ [R(x′)] ≥ τ .

The first condition is essentially requiring that a 1− ǫ proportion of exam-
ples x are on average 2γ more similar to random reasonable examples of the
same class than to random reasonable examples of the opposite class and the
second condition that at least a τ proportion of the examples are reasonable.
Figure 1 gives a graphical insight into the definition. Note that other defini-
tions are possible, like those proposed by Wang et al (2007) for unbounded
dissimilarity functions. Yet Definition 1 is very interesting in two respects.
First, it includes all good kernels as well as some non-PSD similarity func-
tions. In that sense, this is a strict generalization of the notion of good kernel
(Balcan et al, 2008). Second, these conditions are sufficient to learn well, i.e.,
to induce a linear separator α in an explicit space that has low-error relative
to L1-margin γ. This is formalized in Theorem 1.

Theorem 1 (Balcan et al, 2008) Let K be an (ǫ, γ, τ)-good similarity func-
tion for a learning problem P . Let S = {x′

1, x
′
2, . . . , x

′
d} be a (potentially

unlabeled) sample of d = 2
τ

(

log(2/δ) + 8 log(2/δ)
γ2

)

landmarks drawn from P .

Consider the mapping φS : X → R
d defined as follows: φS

i (x) = K(x, x′
i),

i ∈ {1, . . . , d}. Then, with probability at least 1− δ over the random sample S,
the induced distribution φS(P ) in R

d has a linear separator of error at most
ǫ + δ relative to L1 margin at least γ/2.

Therefore, if we are given an (ǫ, γ, τ)-good similarity function for a learning
problem P and enough (unlabeled) landmark examples, then with high prob-
ability there exists a low-error linear separator α in the explicit “φ-space”,
which is the space of the similarities to the d landmarks (see Figure 2 for an
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Positive class

Reasonable point

Negative class

H
H

H
H

x′
x

A B C D E F G H

A 0 -0.19 -0.31 -0.41 -0.43 -0.82 -0.87 -1
C -0.31 -0.41 0 -0.39 -0.50 -0.74 -0.88 -0.99
G -0.87 -0.70 -0.88 -0.50 -0.43 -0.27 0 -0.14

Fig. 1 A graphical insight into Definition 1. Let us consider the points shown above and
take the similarity function K to be minus the normalized Euclidean distance. Distances to
the reasonable points are given in the array. We can set τ = 3/8 since 3 points out of 8 are
reasonable. There exists an infinite number of valid instantiations of ǫ and γ since there is
a trade-off between the margin γ and proportion of margin violations ǫ. For example, K
is (0, 0.03, 3/8)-good because all points (ǫ = 0) are on average 2γ = 0.06 more similar to
reasonable examples of the same class than to reasonable examples of the other class. One
can also say that K is (1/8, 0.12, 3/8)-good (ǫ = 1/8 because example E violates the margin
γ = 0.12).

K(x, A)
K(x, C)

K(x, G)

A
B

C

D
EF

G

H

Fig. 2 The projection space (φ-space) implied by the example from Figure 1: similarity
scores to the reasonable points (A, C and G) are used as features. The linear separator α is
also shown as a dotted grid.

example). Unfortunately, finding this separator α is NP-hard (even to approx-
imate) because minimizing the number of L1-margin violations is NP-hard. To
overcome this limitation, the authors considered the hinge loss instead of the
margin error in the following reformulation of Definition 1:

Definition 2 (Balcan et al, 2008) A similarity function K : X × X →
[−1, 1] is an (ǫ, γ, τ)-good similarity function in hinge loss for a learning prob-
lem P if there exists a (random) indicator function R(x) defining a (proba-
bilistic) set of “reasonable points” such that the following conditions hold:

1. E(x,ℓ)∼P [[1 − ℓg(x)/γ]+] ≤ ǫ, where g(x) = E(x′,ℓ′)∼P [ℓ′K(x, x′)|R(x′)]
and [1 − c]+ = max(0, 1 − c) is the hinge loss,
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2. Prx′ [R(x′)] ≥ τ .

This leads to the following theorem, similar to Theorem 1.

Theorem 2 (Balcan et al, 2008) Let K be an (ǫ, γ, τ)-good similarity
function in hinge loss for a learning problem P . For any ǫ1 > 0 and 0 ≤
δ ≤ γǫ1/4, let S = {x′

1, x
′
2, . . . , x

′
d} be a (potentially unlabeled) sample of

d = 2
τ

(

log(2/δ) + 16 log(2/δ)
ǫ1γ2

)

landmarks drawn from P . Consider the map-

ping φS : X → R
d defined as follows: φS

i (x) = K(x, x′
i), i ∈ {1, . . . , d}. Then,

with probability at least 1− δ over the random sample S, the induced distribu-
tion φS(P ) in R

d has a linear separator of error at most ǫ + ǫ1 at margin γ.

The objective is now to find a linear separator α ∈ R
d that has low error

based on the expected hinge loss relative to L1-margin γ:

E(x,ℓ)∼P [[1 − ℓ〈α, φS(x)〉/γ]+].

Using du unlabeled examples and dl labeled examples, one can find this sepa-
rator α ∈ R

du by solving the following linear program (LP):1

min
α

dl
∑

i=1



1 −
du
∑

j=1

αjℓiK(xi, x
′
j)





+

+ λ‖α‖1. (1)

Note that (1) is essentially a 1-norm SVM problem (Zhu et al, 2003) with
an empirical similarity map (Balcan and Blum, 2006), and can be efficiently
solved. An important feature of (1) is the L1-regularization on α, which in-
duces sparsity, as opposed to L2-regularization (see Figure 3 for a geometric
interpretation). It allows automatic selection of reasonable points among the
available landmarks, ignoring the others (whose corresponding coordinates in
α will be set to zero during learning). Therefore, one does not need to know
in advance the set of reasonable points R: it is automatically worked out while
learning α. We can also control the sparsity of the solution: the larger λ, the
sparser α.

Our objective in this paper is to make use of this theory to efficiently learn
(ǫ, γ, τ)-good edit similarities from data that will lead to effective classifiers.

2.2 String Edit Distance

The classic edit distance, known as the Levenshtein distance (Levenshtein,
1966), is defined as follows.

1 The original formulation (Balcan et al, 2008) was actually L1-constrained. We provide
here an equivalent, more practical L1-regularized form.
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(a) L2 (b) L1

Fig. 3 Geometric interpretation of L2 and L1 constraints, adapted from (Bach and Obozin-
ski, 2010). The L1-norm tends to zero out coordinates, thus reducing dimensionality. This
intuition also holds in the case of regularization.

Definition 3 The Levenshtein distance eL(x, x′) between two strings x =
x1 . . . xm and x′ = x′

1 . . . x′
n of length m and n respectively is the minimum

number of edit operations to change x into x′. The allowable operations are
insertion, deletion and substitution of a symbol. eL can be computed in O(mn)
time using dynamic programming.

Instead of only counting the minimum number of required operations, we
can set a cost (or probability) for each edit operation. These parameters are
usually represented as a positive cost matrix C of size (A+1)×(A+1), where A
is the size of A, the alphabet x and x′ have been generated from (the additional
row and column account for insertion and deletion costs respectively). Ci,j

gives the cost of the operation changing the symbol ci into cj , ci and cj ∈
A ∪ {$}, where $ is the empty symbol. Given C, a generalized edit similarity
eC can be defined as being the cost corresponding to the sequence of minimum
cost. This sequence is called the optimal edit script.

3 Related Work on String Edit Similarity Learning

Using a matrix C that is appropriately tuned to the considered task can lead to
significant improvements in performance. For some applications, such matrices
may be available, like BLOSUM in the context of protein sequence alignment
(Henikoff and Henikoff, 1992). However, in most domains it is not the case, and
tuning the costs manually is difficult. For this reason, methods for learning C
from data have attracted a lot of interest. Most general-purpose approaches
take the form of probabilistic models. Parameter estimation methods of edit
transducers were used to infer generative (Ristad and Yianilos, 1998; Bilenko
and Mooney, 2003; Takasu, 2009) or discriminative models (Oncina and Seb-
ban, 2006).

Note that the above approaches use an Expectation-Maximization (EM)-
like algorithm (Dempster et al, 1977) to estimate the parameters of proba-
bilistic models. Beyond the fact that EM is not guaranteed to converge to a
global optimum, it can also cause two major drawbacks in the context of edit
distance learning. First, since EM is iterative, parameter estimation and dis-
tance calculations must be performed several times until convergence, which
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can be expensive to compute, especially when the size of the alphabet and/or
the length of the strings are large. Second, by maximizing the likelihood of
the data, one only considers pairs of strings of the same class (positive pairs)
while it may be interesting to make use of the information brought by pairs of
strings that have a different label (negative pairs). As a consequence, the above
methods “move closer together” examples of the same class, without trying
to also “move away from each other” examples of different class. McCallum
et al (2005) consider discriminative conditional random fields, dealing with
positive and negative pairs in specific states, but still using EM for parameter
estimation. To overcome the drawback of iterative approaches for the task of
detecting remote homology in protein sequences, Saigo et al (2006) optimize
by gradient descent an objective function meant to favor the discrimination
between positive and negative examples. But this is done by only using positive
pairs of distant homologs.

Despite their diversity, a common feature shared by all of the above ap-
proaches is that they do not optimize similarity functions to be (ǫ, γ, τ)-good
and thus do not take advantage of the theoretical results of Balcan et al (2008).
In other words, there is no theoretical guarantee that the learned edit func-
tions will lead to better performance for the classification or clustering task at
hand. In the following, we propose a loss minimization-based edit similarity
learning approach, GESL, that bridges this gap.

4 Learning (ǫ, γ, τ )-Good Edit Similarity Functions

In this section, we propose a novel convex programming approach based on
the theory of Balcan et al (2008) to learn (ǫ, γ, τ)-good edit similarity func-
tions from both positive and negative pairs without requiring a costly iterative
procedure. We will see in Section 5 that this framework allows us to derive
generalization bounds establishing the consistency of our method and a rela-
tionship between the learned similarities and their (ǫ, γ, τ)-goodness.

We begin this section by introducing an exponential-based edit similarity
function that can be optimized in a direct way. Then, we present our convex
programming approach to the problem of learning (ǫ, γ, τ)-good edit similarity
functions, followed by a discussion on building relevant training pairs in this
context. Finally, we end this section by showing that our approach can be
straightforwardly adapted to tree edit similarity learning.

4.1 An Exponential-based Edit Similarity Function

What makes the edit cost matrix C hard and expensive to optimize is the
fact that the edit distance is based on an optimal script which depends on the
edit costs themselves. This is the reason why, as we have seen earlier, iterative
approaches are very commonly used to learn C from data. In order to avoid
this drawback, we propose to define an edit similarity for which the edit script
does not depend on the edit costs.
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Let #(x, x′) be an (A + 1)× (A + 1) matrix whose elements #i,j(x, x′) are
the number of times each edit operation (i, j) is used to turn x into x′ in the
optimal Levenshtein script, 0 ≤ i, j ≤ A. We define the following edit function:

eG(x, x′) =
∑

0≤i,j≤A

Ci,j#i,j(x, x′).

To compute eG, we do not extract the optimal script with respect to C: we
use the Levenshtein script2 and apply custom costs C to it. Therefore, since
the edit script defined by #(x, x′) is fixed, eG(x, x′) is nothing more than a
linear function of the edit costs and can be optimized directly.

Recall that in the theory of (ǫ, γ, τ)-goodness, a similarity function must
be in [−1, 1]. To respect this requirement, we define our similarity function to
be:

KG(x, x′) = 2e−eG(x,x′) − 1.

Beyond this normalization requirement, the motivation for this exponential
form is related to the one for using exponential kernels in SVM classifiers: it
can be seen as a way to introduce nonlinearity to further separate examples of
opposite class while moving closer those of the same class. Note that KG may
not be PSD nor symmetric. However, as we have seen earlier, the theory of
Balcan et al (2008) does not require these properties, unlike SVM. This allows
us to consider a broader type of edit similarity functions.

4.2 Learning the Edit Costs

We aim at learning the edit cost matrix C so as to optimize the (ǫ, γ, τ)-
goodness of KG. We first focus on optimizing the goodness according to Defi-
nition 2, leading to a formulation based on the hinge loss (GESLHL). Then, we
introduce a more general version that can accommodate other loss functions
(GESLV ).

4.2.1 Hinge Loss Formulation

Here, we want to learn KG so that its hinge loss-based goodness (Definition
2) is optimized. It would be tempting to try to find a way to directly optimize
Definition 2. Unfortunately, this is very difficult because it would result in
a non-convex formulation (summing and subtracting up exponential terms).
Instead, we propose to optimize the following criterion:

E(x,ℓ)

[

E(x′,ℓ′)

[

[1 − ℓℓ′KG(x, x′)/γ]+ |R(x′)
]]

≤ ǫ′. (2)

Criterion (2) bounds that of Definition 2 due to the convexity of the hinge loss.
It is harder to satisfy since the “goodness” is required with respect to each

2 In practice, one could use another type of script. We picked the Levenshtein script
because it is a “reasonable” edit script, since it corresponds to a shortest script transforming
x into x′.
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reasonable point instead of considering the average similarity to these points.
Clearly, if KG satisfies (2), then it is (ǫ, γ, τ)-good in hinge loss with ǫ ≤ ǫ′.

Let us now consider a training sample of NT labeled points T = {zi =
(xi, ℓi)}NT

i=1. Recall that we do not know the set of reasonable points at this
stage: they are inferred while learning the separator, that is, after the similar-
ity is learned. For this reason, as in most similarity learning methods, we will
optimize criterion (2) over some pairs of examples, trying to move closer paired
examples of the same class and to move away those of opposite class. Formally,
we suppose the existence of an indicator pairing function fland : T×T → {0, 1}
which takes as input two training examples in T and returns 1 if they are paired
and 0 otherwise. We assume that fland associates to each element z ∈ T ex-
actly NL examples (called the landmarks for z), leading to a total of NT NL

pairs. We discuss this matter further in Section 4.3.

As we said, our formulation requires the goodness for each (zi, zj) such
that fland(zi, zj) = 1. Therefore, we want [1 − ℓiℓjKG(xi, xj)/γ]+ = 0, hence
ℓiℓjKG(xi, xj) ≥ γ. A benefit from using this constraint is that it can easily
be turned into an equivalent linear one, considering the following two cases.

1. If ℓi 6= ℓj , we get:

−KG(xi, xj) ≥ γ ⇐⇒ e−eG(xi,xj) ≤ 1 − γ

2
⇐⇒ eG(xi, xj) ≥ − log(

1 − γ

2
).

We can use a variable B1 ≥ 0 and write the constraint as eG(xi, xj) ≥ B1,
with the interpretation that B1 = − log(1−γ

2 ). In fact, B1 ≥ − log(1
2 ).

2. Likewise, if ℓi = ℓj , we get eG(xi, xj) ≤ − log(1+γ
2 ). We can use a variable

B2 ≥ 0 and write the constraint as eG(xi, xj) ≤ B2, with the interpretation
that B2 = − log(1+γ

2 ). In fact, B2 ∈
[

0,− log(1
2 )
]

.

The optimization problem GESLHL can then be expressed as follows:

(GESLHL) min
C,B1,B2

1
NT NL

∑

1≤i≤NT ,
j s.t. fland(zi,zj)=1

V (C, zi, zj) + β‖C‖2
F

s.t. V (C, zi, zj) =

{

[B1 − eG(xi, xj)]+ if ℓi 6= ℓj

[eG(xi, xj) − B2]+ if ℓi = ℓj

B1 ≥ − log(1
2 ), 0 ≤ B2 ≤ − log(1

2 ), B1 − B2 = ηγ

Ci,j ≥ 0, 0 ≤ i, j ≤ A,

where β ≥ 0 is a regularization parameter on edit costs, ‖ · ‖F denotes the
Frobenius norm (which corresponds to the L2-norm when considering a ma-
trix as a n × n vector) and ηγ ≥ 0 a parameter corresponding to the desired
“margin”. The relationship between the margin γ and ηγ is given by γ = eηγ −1

eηγ +1 .

GESLHL is a convex program, thus one can efficiently find its global opti-
mum. Using NT NL slack variables to express each hinge loss, it has O(NT NL+
A2) variables and O(NT NL) constraints. Note that GESLHL is quite sparse:
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each constraint involves at most one string pair and a limited number of edit
cost variables, making the problem faster to solve. It is also worth noting that
our approach is very flexible. First, it is general enough to be used with any
definition of eG that is based on an edit script (or even a convex combination
of edit scripts). Second, one can incorporate additional convex constraints, for
instance to include background knowledge or desired requirements on C (e.g.,
symmetry). Third, it can be easily adapted to the multi-class case. Finally,
it can be generalized to a larger class of loss functions, as we show in the
following section.

4.2.2 General Formulation

In the previous section, we made use of the hinge loss-based Definition 2 to
propose GESLHL. Yet, other reformulations of Definition 1 are possible using
any convex loss function that can be used to efficiently penalize the amount of
violation ǫ with respect to margin γ. This would also allow the derivation of
learning guarantees (similar to Theorem 2) and an efficient learning rule. For
instance, the log loss or the quadratic loss for classification could be used. An
interesting comparison of loss functions is provided by Rosasco et al (2004).

Therefore, it is useful to be able to optimize a definition of (ǫ, γ, τ)-goodness
based on a loss other than the hinge. Let V (C, z, z′) be a convex loss function
for an edit cost matrix C with respect to a pair of examples (z, z′). Our
optimization problem can then be expressed in a more general form as follows:

(GESLV ) min
C

1
NT NL

∑

1≤i≤NT ,
j s.t. fland(zi,zj)=1

V (C, zi, zj) + β‖C‖2
F .

In the rest of the paper, we will use GESL to refer to our approach in
general, GESLV when using a loss function V and GESLHL for the specific
case of the hinge loss.

4.3 Pairing strategy

The question of how one should define the pairing function fland relates to the
open question of building training pairs in many similarity learning problems.
In some applications, the answer may be trivial: for instance, a misspelled
word and its correction. Otherwise, popular choices are to pair each example
with its nearest neighbor, random pairing or simply to consider all possible
pairs.

On the other hand, the (ǫ, γ, τ)-goodness similarity should be improved
with respect to the reasonable points, a subset of examples of probability τ that
allows low error and large margin. However, this set depends on the similarity
function itself and is thus unknown beforehand. Yet, a relevant strategy in
the context of (ǫ, γ, τ)-goodness may be to improve the similarity with respect
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to carefully selected examples (the landmarks) rather than considering all
possible pairs. Consequently, we consider two pairing strategies that will be
compared in our experiments (Section 6):

1. Levenshtein pairing : we pair each z ∈ T with its M nearest neighbors of
the same class and its M farthest neighbors of the opposite class, using the
Levenshtein distance. This pairing strategy is meant to capture the essence
of Definition 1 and in particular the idea that reasonable points “represent”
the data well. Essentially, we pair z with a few points that are already good
representatives of z and optimize the edit costs so that they become even
better representatives. Note that the choice of the Levenshtein distance to
pair examples is consistent with our choice to define eG according to the
Levenshtein script.

2. Random pairing : we pair each z ∈ T with a number M of randomly cho-
sen examples of the same class and M randomly chosen examples of the
opposite class.

In either case, we have NL = 2M = αNT with 0 < α ≤ 1. Taking α = 1
corresponds to considering all possible pairs.

4.4 Adaptation to trees

So far, we have implicitly considered that the data were strings. In this section,
before presenting a theoretical analysis of GESL, we show that it may be used
in a straightforward way to learn tree edit similarities, which can be of great
value. Indeed, there is a growing interest in diverse areas for tree-structured
data, due to the applications which naturally involve trees, such as information
extraction from the web, computational biology, computer vision, natural lan-
guage processing, just to name a few. For example, the hierarchical structure
of trees appears to be more suited (than feature vectors or flat representation
such as strings) for modeling web pages (XML, HTML), the RNA secondary
structure of a molecule or phylogenetic processes. Dealing with those applica-
tions requires efficient tree comparison. In this context, many approaches have
extended the string edit distance to trees (Bille, 2005), resorting to the same
elementary edit operations.

Like in the case of strings, the tree edit distance can be efficiently computed
using dynamic programming. When considering two rooted ordered trees of
sizes m and n, where m < n, the best known algorithms for this problem,
due to Zhang and Shasha (1989) and Klein (1998), have an O(n3 log n) time
complexity and an O(mn) space complexity. In these approaches, when a tree
node is deleted, all its children are connected to its father. A less costly variant
of these algorithms has been proposed by Selkow (1977), where deleting a node
leads to the removal of the entire (sub)tree rooted at that node. The insertion
of a (sub)tree is also allowed requiring the iterative insertion of its nodes. Such
a distance is relevant to specific applications. For instance, it would make no
sense to delete a <UL> tag (i.e., a node) of an unordered list in an HTML
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document without removing the <LI> items (i.e., the subtree). In this case,
the tree edit distance can be computed by dynamic programming in cubic
time.

Few methods have been proposed in the literature to automatically learn
the edit cost matrix of a tree edit distance, mostly because of algorithmic
constraints. Bernard et al (2008) optimize the parameters of a stochastic edit
transducer to learn a probabilistic edit similarity using an EM-based approach.
Neuhaus and Bunke (2004) learn a (more general) graph edit distance, where
each edit operation is modeled by a Gaussian mixture density whose parame-
ters are learned using an EM-like algorithm. Zigoris et al (2006) make use of
a variant of SVM to learn a parameterized tree alignment model for extract-
ing fields from HTML search results. They design an optimization problem
which is difficult to solve directly because the edit distance is a function of a
hidden variable. To solve this problem they also use a very time-consuming
EM-like algorithm which becomes intractable when the trees get large. Finally,
Mehdad (2009) proposes a method based on the Particle Swarm Optimization.
The edit costs are learned via an iterative process which (i) may not induce a
true metric and (ii) is not provably effective.

As mentioned in Section 4.1, our edit function, defined as eG(x, x′) =
∑

0≤i,j≤A Ci,j#i,j(x, x′), is nothing more than a linear combination of the
edit costs, where #i,j(x, x′) is the number of times the edit operation (i, j)
occurs in the Levenshstein script turning x into x′. This opens the door to a
straightforward generalization of GESL to tree edit distance: instead of a Lev-
enshtein string edit script, we can use a Levenshtein tree edit script (Zhang
and Shasha, 1989; Klein, 1998; Selkow, 1977) and solve the (otherwise un-
changed) optimization problem presented in Section 4.2. This allows us, once
again, to avoid using a costly iterative procedure. We only have to compute
the edit script between two trees once, which dramatically reduces the algo-
rithmic complexity of the learning algorithm. Moreover, we will see that the
theoretical analysis of GESL presented in the following section holds for tree
edit similarity learning.

5 Theoretical Analysis of GESL

This section presents a theoretical analysis of GESL. In Section 5.1, we de-
rive a generalization bound guaranteeing not only its consistency but also the
overall (ǫ, γ, τ)-goodness of the learned edit similarity function for the task at
hand. This theoretical study is performed for a large class of loss functions.
In Section 5.2, we instantiate this generalization bound for the specific case
of the hinge loss (GESLHL). Finally, Section 5.3 is devoted to a discussion
about the main features of the bounds, and to the presentation of a way to
get rid of the assumption that the size of the examples is bounded.
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5.1 Generalization Bound for General Loss Functions

Considering that the pairs (zi, z
′
j) used to learn C in GESLV are not i.i.d.,

the classic results of statistical learning theory do not directly hold. To derive
a generalization bound, extending the ideas of Jin et al (2009) and Bousquet
and Elisseeff (2002) to edit similarity learning, we first prove that our learn-
ing method has a uniform stability. This is established in Theorem 3 using
Lemma 1 and the hypothesis of k-lipschitzness (Definition 4). The stability
property allows us to derive our generalization bound (Theorem 5) using the
McDiarmid inequality (Theorem 4) and the assumption of (σ,m)-admissibility
(Definition 5).

We denote the objective function of GESLV by:

FT (C) =
1

NT

NT
∑

k=1

1

NL

NL
∑

j=1

V (C, zk, z′kj
) + β‖C‖2

F ,

where z′kj
denotes the jth landmark associated to zk and V (C, zk, z′kj

) the loss
for a pair of examples with respect to an edit cost matrix C.

The first term of FT (C), denoted LT (C) in the following, is the empiri-
cal loss over the training sample T . Let us also define the loss over the true
distribution P , denoted L(C), and the estimation error DT as follows:

L(C) = E(z,z′)∼P [V (C, z, z′)] ; DT = L(CT ) − LT (CT ),

where CT denotes the edit cost matrix learned by GESLV from T . Recall
that our empirical loss is not defined over all possible pairs, unlike most met-
ric learning algorithms, but according to some particular landmark examples.
However the true expected loss is defined over any pair of examples.

In this section, we propose an analysis that holds for a large class of loss
functions. We consider loss functions V that fulfill the k-lipschitz property
with respect to the first argument C (Definition 4) and the definition of (σ,m)-
admissibility (Definition 5).

Definition 4 A loss function V (C, z1, z2) is k-lipschitz with respect to its first
argument if for any matrices C,C ′ and any pair of labeled examples (z1, z2):

|V (C, z1, z2) − V (C ′, z1, z2)| ≤ k‖C − C ′‖F .

Definition 5 A loss function V (C, z1, z2) is (σ,m)-admissible, with respect
to C, if (i) it is convex with respect to its first argument and (ii) the following
condition holds:

∀z1, z2, z3, z4, |V (C, z1, z2) − V (C, z3, z4)| ≤ σ|l1l2 − l3l4| + m

with zi = (xi, li), for i = 1, 2, 3, 4, are labeled examples.
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Definition 5 requires, with respect to a model C, the deviation of the losses
between two pairs of examples to be bounded by a value that depends only on
the labels and some constants independent from the examples and the model.
It follows that the labels must be bounded, which is not a strong assumption
in the classification setting we are interesting in. In our case, we have binary
labels (li ∈ {−1, 1}), which implies that the quantity |l1l2 − l3l4| is either 0 or
2. We will see in Section 5.2 that the hinge loss of GESLHL satisfies Defini-
tions 4 and 5. This can also be shown for other popular loss functions, such as
the log loss or the quadratic loss for classification.3

Note that from the convexity of V with respect to its first argument, it
follows that L, LT and FT are convex functions.

Our objective is to derive an upper bound on the generalization loss L(CT )
with respect to the empirical loss LT (CT ) using uniform stability. A learning
algorithm is stable (Bousquet and Elisseeff, 2002) if its output does not change
significantly under a small modification of the learning sample. We consider
the following definition of uniform stability meaning that the replacement of
one example must lead to a variation bounded in O(1/NT ) in terms of infinite
norm.

Definition 6 (Jin et al, 2009; Bousquet and Elisseeff, 2002) A learning
algorithm has a uniform stability in κ

NT
, where κ is a positive constant, if

∀(T, z),∀i, sup
z1,z2

|V (CT , z1, z2) − V (CT i,z , z1, z2)| ≤
κ

NT
,

where T i,z is the new set obtained by replacing zi ∈ T by a new example z.

To prove that GESLV has the property of uniform stability, we need the
following lemma and the k-lipschitz property of V .

Lemma 1 Let FT and FT i,z be the functions to optimize, CT and CT i,z their
corresponding minimizers, and β the regularization parameter used in GESLV .
Let ∆C = (CT − CT i,z ). For any t ∈ [0, 1]:

‖CT ‖2
F−‖CT−t∆C‖2

F+‖CT i,z‖2
F−‖CT i,z +t∆C‖2

F ≤ (2NT + NL)t2k

βNT NL
‖∆C‖F .

Proof See Appendix A.1.

We can now prove the stability of GESLV .

Theorem 3 (Stability of GESLV) Let NT and NL be respectively the num-
ber of training examples and landmark points. Assuming that NL = αNT ,
α ∈ [0, 1], and that the loss function used in GESLV is k-lipschitz, then

GESLV has a uniform stability in κ
NT

, where κ = 2(2+α)k2

βα .

3 To satisfy Definition 4, their domain must be bounded (Rosasco et al, 2004).
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Proof Using t = 1/2 on the left-hand side of Lemma 1, we get

‖CT ‖2
F − ‖CT − 1

2
∆C‖2

F + ‖CT i,z‖2
F − ‖CT i,z +

1

2
∆C‖2

F =
1

2
‖∆C‖2

F .

Then, applying Lemma 1, we get

1

2
‖∆C‖2

F ≤ (2NT + NL)k

βNT NL
‖∆C‖F ⇒ ‖∆C‖F ≤ 2(2NT + NL)k

βNT NL
.

Now, from the k-lipschitz property of V , we have for any z, z′

|V (CT , z, z′) − V (CT i,z , z, z′)| ≤ k‖∆C‖F ≤ 2(2NT + NL)k2

βNT NL
.

Replacing NL by αNT completes the proof. ⊓⊔

Now, using the property of stability, we can derive our generalization bound
over L(CT ). This is done by using the McDiarmid inequality (McDiarmid,
1989).

Theorem 4 (McDiarmid, 1989) Let X1, . . . ,Xn be n independent random
variables taking values in X and let Z = f(X1, . . . ,Xn). If for each 1 ≤ i ≤ n,
there exists a constant ci such that

sup
x1,...,xn,x′

i∈X

|f(x1, . . . , xn) − f(x1, . . . , x
′
i, . . . , xn)| ≤ ci,∀1 ≤ i ≤ n,

then for any ǫ > 0, Pr[|Z − E[Z]| ≥ ǫ] ≤ 2 exp

( −2ǫ2
∑n

i=1 c2
i

)

.

To derive our bound on L(CT ), we just need to replace Z by DT in Theorem
4 and to bound ET [DT ] and |DT − DT i,z |, which is shown by the following
lemmas.

Lemma 2 For any learning method of estimation error DT and satisfying a
uniform stability in κ

NT
, we have ET [DT ] ≤ 2κ

NT
.

Proof See Appendix A.2.

Lemma 3 For any edit cost matrix learned by GESLV using NT training ex-
amples and NL landmarks, and any loss function V satisfying (σ,m)-admissibility,
we have the following bound:

∀i, 1 ≤ i ≤ NT , ∀z, |DT − DT i,z | ≤ 2κ

NT
+

(2NT + NL)(2σ + m)

NT NL
.

Proof See Appendix A.3.

We are now able to derive our generalization bound over L(CT ).
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Theorem 5 (Generalization bound for GESLV) Let T be a sample of
NT randomly selected training examples and let CT be the edit cost matrix
learned by GESLV with stability κ

NT
. Assuming that V (CT , z, z′) is k-lipschitz

and (σ,m)-admissible, and using NL = αNT landmark points, with probability
1 − δ, we have the following bound for L(CT ):

L(CT ) ≤ LT (CT ) + 2
κ

NT
+

(

2κ +
2 + α

α
(2σ + m)

)

√

ln(2/δ)

2NT

with κ = 2(2+α)k2

αβ .

Proof Recall that DT = L(CT ) − LT (CT ) and NL = αNT . From Lemma 3,
we get

|DT − DT i,z | ≤ sup
T,z′

|DT − DT i,z′ | ≤ 2κ + B

NT
with B =

(2 + α)

α
(2σ + m).

Then by applying the McDiarmid inequality, we have

Pr[|DT − ET [DT ]| ≥ ǫ] ≤ 2 exp



− 2ǫ2
∑NT

i=1
(2κ+B)2

N2

T



 ≤ 2 exp

(

− 2ǫ2

(2κ+B)2

NT

)

.

(3)

By fixing δ = 2 exp
(

− 2ǫ2

(2κ+B)2/NT

)

, we get ǫ = (2κ + B)
√

ln(2/δ)
2NT

. Finally,

from (3), Lemma 2 and the definition of DT , we have with probability at least
1 − δ:

DT < ET [DT ] + ǫ ⇒ L(CT ) < LT (CT ) + 2
κ

NT
+ (2κ + B)

√

ln(2/δ)

2NT
.

⊓⊔

5.2 Generalization Bound for the Hinge Loss

Theorem 5 holds for any loss function V (CT , z, z′) that is k-lipschitz and
(σ,m)-admissible with respect to CT . Let us now rewrite this bound when
V is the hinge loss-based function used in GESLHL. We first have to prove
that V is k-lipschitz (Lemma 4) and (σ,m)-admissible (Lemma 6). Then, we
derive the generalization bound for GESLHL.

In order to fulfill the k-lipschitz and (σ,m)-admissibility properties, we
suppose every string length bounded by a constant W > 0. Since the Leven-
shtein script contains at most max(|x1|, |x2|) operations, this implies that for
any string pair,

‖#(x1, x2)‖F =

√

∑

l,c

#l,c(x1, x2)2 ≤

√

√

√

√

√





∑

l,c

#l,c(x1, x2)





2

≤ W.
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We will also denote ‖#(x1, x2)‖F ≤ W by ‖#(z1, z2)‖F ≤ W for the sake of
convenience when using labeled examples.

Lemma 4 The function V used in GESLHL is k-lipschitz with k = W .

Proof See Appendix A.4.

We will now prove that V is (σ,m)-admissible for any optimal solution CT

learned by GESLHL (Lemma 6). To be able to do this, we must show that
the norm of CT is bounded (Lemma 5).

Lemma 5 Let (CT , B1, B2) an optimal solution learned by GESLHL from a

training sample T , and let Bγ = max(ηγ ,−log(1/2)). Then ‖CT ‖F ≤
√

Bγ

β .

Proof See Appendix A.5.

Lemma 6 For any optimal solution (CT , B1, B2), the function V used in

GESLHL is (σ,m)-admissible with σ =

q

Bγ
β

W+3Bγ

2 and m =
√

Bγ

β W , with

Bγ = max(ηγ ,− log(1/2)).

Proof Let CT be an optimal solution learned by GESLHL from a training
sample T and let z1, z2, z3, z4 be four labeled examples. We study two cases:

1. If ℓz1
ℓz2

= ℓz3
ℓz4

, whatever the labels of each examples are, using the 1-
lispschitz property of the hinge loss, the B1 (when ℓz1

ℓz2
= ℓz3

ℓz4
= −1)

or B2 (ℓz1
ℓz2

= ℓz3
ℓz4

= 1) values cancel out (in a similar way as in
Appendix 4) and thus :

|V (CT , z1, z2) − V (CT , z3, z4)| ≤ ‖CT ‖F‖#(z1, z2) − #(z3, z4)‖F

≤
√

Bγ

β
W from Lemma 5.

2. Otherwise, if ℓz1
ℓz2

6= ℓz3
ℓz4

, note that |B1 + B2| = ηγ + 2B2 ≤ 3Bγ and
|ℓz1

ℓz2
− ℓz3

ℓz4
| = 2. Hence, whatever the labels of the examples com-

patible with this case, by using the 1-lipschitz property of hinge loss and
application of the triangular inequality, we get

|V (CT , z1, z2) − V (CT , z3, z4)| ≤ |
∑

l,c

CTl,c
(#l,c(z1, z2) + #l,c(z3, z4))| +

|B1 + B2|
≤ ‖CT ‖F‖#(z1, z2) + #(z3, z4)‖F + 3Bγ

≤
√

Bγ

β
2W + 3Bγ

≤

√

Bγ

β W + 3Bγ

2
|ℓz1

ℓz2
− ℓz3

ℓz4
| +
√

Bγ

β
W.
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Then, by choosing σ =

q

Bγ
β

W+3Bγ

2 and m =
√

Bγ

β W , we have that V is

(σ,m)-admissible. ⊓⊔

We can now give the convergence bound for GESLHL.

Theorem 6 (Generalization bound for GESLHL) Let T be a sample of
NT randomly selected training examples and let CT be the edit cost matrix
learned by GESLHL with stability κ

NT
using NL = αNT landmark points.

With probability 1 − δ, we have the following bound for L(CT ):

L(CT ) ≤ LT (CT ) + 2
κ

NT
+

(

2κ +
2 + α

α

(

2W
√

βBγ

+ 3

)

Bγ

)

√

ln(2/δ)

2NT

with κ = 2(2+α)W 2

αβ and Bγ = max(ηγ ,−log(1/2)).

Proof It directly follows from Theorem 5, Lemma 4 and Lemma 6 by noting

that 2σ + m =

(

2W√
βBγ

+ 3

)

Bγ . ⊓⊔

5.3 Discussion

The generalization bounds presented in Theorem 5 and Theorem 6 outline
three important features of our approach. To begin with, it has a convergence
in O(

√

1/NT ), which is classical with the notion of uniform stability. Second,
this rate of convergence is independent of the alphabet size, which means that
our method should scale well to problems with large alphabets. We will see
in Section 6 that it is the case in practice. Finally, thanks to the relation be-
tween the optimized criterion and the definition of (ǫ, γ, τ)-goodness that we
established earlier, these bounds also ensure the goodness in generalization of
the learned similarity function. Therefore, they guarantee that the similarity
will induce low-error classifiers for the classification task at hand.

Note that to derive Theorem 6, we assumed the size of the strings was
bounded by a constant W . Even though this is not a strong restriction, it
would be interesting to get rid of this assumption and derive a bound that is
independent of W . This is possible when the marginal distribution of P over
the set of strings follows a generative model ensuring that the probability of
a string decreases exponentially fast with its length. In this case, we can use
the fact that very long strings have a very small probability to occur. Then
with high probability, we can bound the maximum string length in a sample
and remove W from the generalization bound. Indeed, one can show that for
any string stochastic language p defined by a probabilistic automaton (Denis
et al, 2006) or a stochastic context-free grammar (Etessami and Yannakakis,
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2009), there exist some constants U > 0 and 0 < ρ < 1 such that the sum of
the probabilities of strings of length at least k is bounded:

∑

x,|x|>=k

p(x) < Uρk. (4)

To take into account this result in our framework, we need an estimation of
the length of all the examples used to derive the generalization bound, that
is, a sample of NT examples with two additional examples z and z′. For any
sample of NT + 2 strings identically and independently drawn from p, we can
bound the length of any string x of this sample. With a confidence greater
than 1 − δ/2(NT + 2), we have:

|x| <
log(U2(NT + 2)/δ)

log(1/ρ)
,

by fixing δ/2(NT + 2) = Uρk.

Applying this result to every string of the sample, we get that with prob-
ability at least 1− δ/2, any sample of NT + 2 elements has only strings of size

at most log(U2(NT +2)/δ)
log(1/ρ) . Then, by using Theorem 6 with a confidence δ/2 and

replacing W by log(2(NT +2)U/δ)
log(1/ρ) , we obtain the following bound.

Theorem 7 Let T be a sample of NT randomly selected training examples
drawn from a stochastic language p and let CT be the edit costs learned by
GESLHL with stability κ

NT
using NL = αNT landmark points. Then there

exists constants U > 0 and 0 < ρ < 1 such that with probability at least 1 − δ,
we have:

L(CT ) ≤ LT (CT ) + 2
κ

NT

+

 

2κ +
2 + α

α

 

2 log(2(NT + 2)U/δ)
p

βBγ log(1/ρ)
+ 3

!

Bγ

!
s

ln(4/δ)

2NT

with κ = 2(2+α) log2(2(NT +2)U/δ)
αβ log2(1/ρ)

and Bγ = max(ηγ ,−log(1/2)).

Finally, let us conclude this section by discussing the adaptation of the
entire theoretical analysis to tree edit similarity learning. The generalization
bound for GESLV (Theorem 5) holds since the arguments used in Section 5.1
are not specific to strings. Regarding the bound for GESLHL (Theorem 6), we
used the assumption that the length of the strings is bounded by a constant
W . This can be easily adapted to trees: if we assume that the size of each tree
(in its number of nodes) is bounded by W , Theorem 6 also holds. Finally, the
arguments for deriving a bound independent of the constant W hold for trees
since the property (4) is also valid for rational stochastic tree languages (Denis
et al, 2008).
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6 Experimental Results

In this section, we provide an experimental evaluation of GESLHL.4 We com-
pare three edit similarity functions: (i) KG, learned by GESLHL,5 (ii) the
Levenshtein distance eL, which constitutes the baseline, and (iii) an edit sim-
ilarity function pe learned with an EM-like algorithm (Oncina and Sebban,
2006).6 Linear classifiers are learned from these similarity functions using the
linear program (1) presented in Section 2.1. We show results on two datasets:
English and French words (Section 6.1) and handwritten digits (Section 6.2).

6.1 English and French Words

The task is to learn a model to classify words as either English or French. We
use the 2,000 top words lists from Wiktionary.7

6.1.1 Convergence rate

We first assess the convergence rate of the two considered edit cost learning
methods (i and iii). We keep aside 600 words as a validation set to tune the
parameters, using 5-fold cross-validation and selecting the value offering the
best classification accuracy. We build bootstrap samples T from the remaining
2,000 words to learn the edit costs (5 runs for each size NT ), as well as 600
words to train the separator α and 400 words to test its performance.

Figure 4 shows the accuracy and sparsity results of each method with
respect to NT , averaged over 5 runs. We see that KG leads to more accurate
classifiers than eL and pe for NT > 20. The difference is statistically significant:
the Student’s t-test yields a p-value < 0.01. At the same time, KG requires 3
to 4 times less reasonable points, thus increasing classification speed by just
as much. The exact figures are as follows: eL achieves 69.55% accuracy with a
model size of 197, pe achieves at best 74.80% with a model size of 155, and KG

achieves at best 78.65% with a model size of only 45. This clearly indicates
that GESLHL leads to a better similarity than (ii) and (iii). Moreover, the
convergence rate of GESLHL is very fast, considering that (26 + 1)2 = 729
costs must be learned: it needs very few examples (about 20) to outperform the
Levenshtein distance, and less than 500 examples to reach convergence. This
provides experimental evidence that our method scales well with the size of
the alphabet, as suggested by the generalization bound derived in Section 5.2.

4 An open-source implementation of our method is available at:
http://labh-curien.univ-st-etienne.fr/~bellet/.

5 In this series of experiments, we constrained the cost matrices to be symmetric in order
not to be dependent on the order in which the examples are considered.

6 We used their software SEDiL: http://labh-curien.univ-st-etienne.fr/SEDiL/
7 These lists are available at http://en.wiktionary.org/wiki/Wiktionary:Frequency_

lists. We only considered unique words (i.e., not appearing in both lists) of length at least
4, and we also got rid of accent and punctuation marks. We ended up with about 1,300
words of each language over an alphabet of 26 symbols.
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Fig. 4 Learning the costs: accuracy and sparsity results with respect to NT (English and
French words dataset).

On the other hand, (iii) seems to suffer from the large number of costs to
estimate: it needs a lot more examples to outperform Levenshtein (about 200)
and convergence seems to be only reached at 1,000.

6.1.2 Pairing strategy and influence of α

Here, we compare the two pairing strategies (random pairing and Levenshtein
pairing) presented in Section 4.3 as well as the influence of α (the proportion
of landmarks associated with each training example). Figure 5 shows the ac-
curacy and sparsity results obtained for NT = 1500 with respect to α and the
pairing strategies.8 The accuracy for eL and pe is carried over from Figure 4 for
comparison (model sizes for eL and pe, which are not shown for scale reasons,
are 197 and 152 respectively).

These results are very informative. Regardless of the pairing strategy, KG

outperforms eL and pe even when making use of a very small proportion of the
available pairs (1%), which tremendously reduce the complexity of the sim-
ilarity learning phase. Random pairing gives better results than Levenshtein
pairing for α ≤ 0.4. When α ≥ 0.6, this trend is reversed. This means that for
a small proportion of pairs, we learn better from pairing random landmarks
than from pairing landmarks that are already good representatives of the train-
ing examples. On the other hand, when the proportion increases, Levenshtein
pairing allows us to avoid pairing examples with the “worst” landmarks: best
results are obtained with Levenshtein pairing and α = 0.8.

6.1.3 Learning the separator

We now assess the performance of the three edit similarities with respect to
the number of examples dl used to learn the separator α. For KG and pe,
we use the edit cost matrix that performed best in Section 6.1.1. Taking our
set of 2,000 words, we keep aside 400 examples to test the models and build

8 We do not evaluate the pairing strategies on the whole data (NT = 2000) so that we
can build 5 bootstrap samples and average the results over these.
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Fig. 5 Pairing strategies: accuracy and sparsity results with respect to α (English and
French words dataset).
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Fig. 6 Learning the separator: accuracy and sparsity results with respect to dl (English
and French words dataset).

bootstrap samples from the remaining 1,600 words to learn α. Figure 6 shows
the accuracy and sparsity results of each method with respect to dl, averaged
over 5 runs. Again, KG outperforms eL and pe for every size dl (the difference
is statistically significant with a p-value < 0.01 using a Student’s t-test) while
always leading to (up to 5 times) sparser models. Moreover, the size of the
models induced by KG stabilizes for dl ≥ 400 while the accuracy still increases.
This is not the case for the models induced by eL and pe, whose size keeps
growing. To sum up, the best similarity learned by GESLHL outperforms the
best similarity learned with the method of Oncina and Sebban (2006), which
had been proven to outperform other state-of-the-art methods.

6.1.4 Reasonable points analysis

Finally, one may wonder what kind of words are selected as reasonable points in
the models. The intuition is that they should be some sort of “discriminative
prototypes” the classifier is based on. To investigate this, using KG and a
training set of 1,200 examples, we learned a classifier α with a high value
of λ to enforce a very sparse model, thus making the analysis easier. The
set of 11 reasonable points automatically selected during the learning process
is shown in Table 1. Our interpretation of why these particular words were
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English French

high showed holy economiques americaines decouverte

liked hardly britannique informatique couverture

Table 1 Example of a set of 11 reasonable points.

w y k q nn gh

English 146 144 83 14 5 34
French 7 19 5 72 35 0

ai ed$ ly$ es?$ ques?$ ^h

English 39 151 51 265 0 62
French 114 51 0 630 43 14

Table 2 Some discriminative patterns extracted from the reasonable points of Table 1 (^:
start of word, $: end of word, ?: 0 or 1 occurrence of preceding letter).

chosen is that this small set actually carries a lot of discriminative patterns.
Table 2 shows some of these patterns (extracted by hand from the reasonable
points of Table 1) along with their number of occurrences in each class over the
entire dataset. For example, words ending with ly correspond to English words,
while those ending with que characterize French words. Note that Table 1 also
reflects the fact that English words are shorter on average (6.99) than French
words (8.26) in the dataset, but the English (resp. French) reasonable points
are significantly shorter (resp. longer) than the average (mean of 5.00 and
10.83 resp.), which allows better discrimination. Note that we generated other
sets of reasonable points from several training sets and observed the same
patterns.

6.2 Handwritten Digits

We use the NIST Special Database 3 of the National Institute of Standards
and Technology, describing a set of 10,000 handwritten characters in the form
of 128x128 bitmap images. Each instance is represented as a string of Freeman
codes (Freeman, 1974) following the contour (starting from the top left pixel
of the digit), as shown in Figure 7. Classifying digits using this string rep-
resentation and edit similarities yields close-to-perfect accuracy, even in the
multi-class setting (Oncina and Sebban, 2006; Bellet et al, 2010, 2011a). In
order to make the comparison between the edit similarities (i-iii) easier, we
evaluate them on the binary task of discriminating between even and odd dig-
its. This task is harder due to extreme within-class variability: each class is in
fact a “meta-class” containing instances of 5 basic classes of digits. Therefore,
every example is highly dissimilar to about 80% of the examples of its own
class (e.g., 1’s are dissimilar to 5’s and 0’s are dissimilar to 4’s, although they
belong to the same class).
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Fig. 7 Three digits (0, 1, 8) and their respective string representation.

6.2.1 Convergence rate

Once again, we assess the convergence of the cost learning methods (i and iii).
We keep aside 2000 words as a validation set to tune the parameters (using
5-fold cross-validation and selecting the value offering the best classification
accuracy) as well as 2000 words for testing the models. We build bootstrap
samples T from the remaining 6,000 words to learn the edit costs (5 runs for
each size NT ), as well as 400 words to train the separator α.

Figure 8 shows the accuracy and sparsity results of each method with
respect to NT , averaged over 5 runs. First of all, we notice that the Levenshtein
distance eL performs nicely on this task (95.19% with a model size of 70) and
that pe is never able to match eL’s accuracy level (94.94% at best with a model
size of 78). In our opinion, this poor performance comes from the fact that
pe does not take advantage of negative pairs. In a context of extreme within-
class variability, moving closer examples of the same class without making
sure that examples of different class are kept far from each others yields an
underperforming similarity. On the other hand, our method shows the same
general behavior on this task as on the previous task. Indeed, convergence
is fast despite the richness of the two classes (only 100 examples to match
Levenshtein’s accuracy and about 1,000 to reach convergence). Moreover, KG

achieves significantly better performance (95.63% at best with a model size of
57) than both eL (p-value < 0.05 for NT ≥ 250 using a Student’s t-test) and
pe (p-value < 0.01 for NT > 20).

6.2.2 Pairing strategy and influence of α

Figure 9 shows the accuracy and sparsity results obtained for NT = 2000
with respect to α and the pairing strategies. The performance for eL and pe is
carried over from Figure 8 for comparison. Results are very different from those
obtained on the previous dataset. Here, KG with random pairing is always
outperformed by both eL and pe. On the other hand, KG with Levenshtein
pairing performs better than every other approaches for 0.05 ≤ α ≤ 0.4. This
behavior can be explained by the meta-class structure of the dataset. When
using random pairing, many training examples are paired with landmarks of
the same class but yet very different (for instance, a 1 paired with a 5, or a 0
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Fig. 9 Pairing strategies: accuracy and sparsity results with respect to α (handwritten
digits dataset).

paired with a 4), and trying to “move them closer” is a fruitless effort. On the
other hand, we know that the Levenshtein distance is an appropriate measure
to discriminate between handwritten digits (Oncina and Sebban, 2006; Bellet
et al, 2010, 2011a). Therefore, when using Levenshtein pairing with α ≤ 0.2,
the problematic situation explained above rarely occurs. When α > 0.2, since
each meta-class is made out of 5 basic classes in even proportions, more and
more examples are paired with “wrong” landmarks and the performance drops
dramatically.

This result yields a valuable conclusion: similarity learning should not al-
ways focus on optimizing over all possible pairs (although it is often the case
in the literature), since it may lead to poor classification performance. In some
situations, such as the presence of high within-class variability, it may be a
better strategy to improve the similarity according to a few carefully selected
pairs.

6.2.3 Reasonable points analysis

To provide an insight into what kind of digits are selected as reasonable points,
we follow the same procedure as in Section 6.1.4 using a training set of 2,000
examples. We end up with a set of 13 reasonable points. The corresponding
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Fig. 10 Example of a set of 13 reasonable points.

digit contours are drawn in Figure 10, allowing a graphical interpretation of
why these particular examples were chosen. Note that this set is representative
of a general tendency: we experimented with several training sets and obtained
similar results. The most striking thing about this set is that 7’s are over-
represented (4 out of the 6 reasonable points of the odd class). This is explained
by the fact that 7’s (i) account for 1’s and 9’s (their contour is very similar),
which also gives a reason for the absence of 1’s and 9’s in the set, and (ii)
are not similar to any even digits. The same kind of reasoning applies to 6’s
(the lower part of 6’s is shared by 0’s and 8’s, but not by any odd number)
and 3’s (lower part is the same as 5’s). We can also notice the presence of
4’s: they have a contour mostly made of straight lines, which is unique in the
even class. There is also a 2 which contour is somewhat similar to a 1. Lastly,
another explanation for having several occurrences of the same digit may be
to account for variations of size (the two 4’s), shape or orientations (the three
6’s).

7 Conclusion and Perspectives

In this work, we proposed a novel loss minimization-based approach to the
problem of learning edit similarities from data, called GESL. Our formula-
tion is based on the notion of (ǫ, γ, τ)-goodness, which gives conditions for a
similarity function to allow one to learn well without metric or PSD require-
ment. As opposed to most state-of-the-art approaches, GESL is not based on
a costly iterative procedure but on solving an efficient convex program, and
can accommodate both positive and negative training pairs. Furthermore, it
is also a suitable way to learn tree edit similarities.

We provided a theoretical analysis of GESL, which holds for a large class
of loss functions. A generalization bound in O(

√

1/NT ) was derived using the
notion of uniform stability. This bound is (i) related to the goodness of the
resulting similarity, which gives guarantees that the similarity will induce ac-
curate classifiers for the task at hand, and (ii) independent from the size of the
alphabet, making GESL suitable for problems involving large vocabularies.

We conducted experiments on two string datasets that shows that GESL
has fast convergence and that the learned similarities perform very well in
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Fig. 11 1-Nearest Neighbor accuracy results for both datasets.

practice, inducing more accurate and sparser models than other (standard or
learned) edit similarities. We also studied two pairing strategies and observed
that Levenshtein pairing is more stable to high within-class variability, and
that considering all possible pairs is not necessarily a good approach.

An interesting perspective is to assess the relevance of similarities learned
with GESL when used in k-Nearest Neighbors classifiers. Indeed, when us-
ing Levenshtein pairing, GESL’s objective is somewhat related to the k-NN
prediction rule. This intuition is confirmed by preliminary results using a 1-
NN classifier (Figure 11), where KG outperforms eL and pe on both datasets.
These first results open the door to a further theoretical analysis and might
lead to k-NN generalization guarantees for GESL.

Another promising avenue of research is to learn (ǫ, γ, τ)-good similarities
for data made of vectors, in particular Mahalanobis distances, which have
attracted a lot of interest in the similarity learning community. The theory of
(ǫ, γ, τ)-goodness offers a new objective to optimize the transformation matrix
(based on an average of similarity scores) and does not require the similarity
function to be a valid metric, while satisfying this requirement is the bottleneck
in many Mahalanobis distance learning approaches. This opens the door to
efficient learning of (ǫ, γ, τ)-good “Mahalanobis-like” similarities.

Acknowledgements We would like to acknowledge support from the ANR LAMPADA
09-EMER-007-02 project and the PASCAL 2 Network of Excellence.
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A Appendices

A.1 Proof of Lemma 1

Lemma 1 Let FT and FT i,z be the functions to optimize, CT and CT i,z their correspond-

ing minimizers, and β the regularization parameter. Let ∆C = (CT − CT i,z ). For any

t ∈ [0, 1]:

‖CT ‖2
F − ‖CT − t∆C‖2

F + ‖CT i,z‖2
F − ‖CT i,z + t∆C‖2

F ≤
(2NT + NL)t2k

βNT NL

‖∆C‖F .

Proof The first steps of this proof are similar to the proof of Lemma 20 in (Bousquet and
Elisseeff, 2002) which we recall for the sake of completeness. Recall that any convex function
g verifies

∀x, y, ∀t ∈ [0, 1], g(x + t(y − x)) − g(x) ≤ t(g(y) − g(x)).

LT i,z (·) is convex and thus for any t ∈ [0, 1],

LT i,z (CT − t∆C) − LT i,z (CT ) ≤ t(LT i,z (CT i,z ) − LT i,z (CT )). (5)

Switching the role of CT and CT i,z , we get:

LT i,z (CT i,z + t∆C) − LT i,z (CT i,z ) ≤ t(LT i,z (CT ) − LT i,z (CT i,z )). (6)

Summing up inequalities (5) and (6) yields

LT i,z (CT − t∆C) − LT i,z (CT ) + LT i,z (CT i,z + t∆C) − LT i,z (CT i,z ) ≤ 0. (7)

Now, since CT and CT i,z are minimizers of FT and FT i,z respectively, we have:

FT (CT ) − FT (CT − t∆C) ≤ 0 (8)

FT i,z (CT i,z ) − FT i,z (CT i,z + t∆C) ≤ 0. (9)

By summing up (8) and (9) we get:

LT (CT ) + β‖CT ‖F − (LT (CT − t∆C) + β‖CT − t∆C‖F ) +

LT i,z (CT i,z ) + β‖CT i,z‖F − (LT i,z (CT i,z + t∆C) + β‖CT i,z + t∆C‖F ) ≤ 0.

By summing this last inequality with (7), we obtain

LT (CT ) + β‖CT ‖F − (LT (CT − t∆C) + β‖CT − t∆C‖F ) +

β‖CT i,z‖F − (β‖CT i,z + t∆C‖F ) + LT i,z (CT − t∆C) − LT i,z (CT ) ≤ 0.

Let B = LT (CT − t∆C) − LT i,z (CT − t∆C) − (LT (CT ) − LT i,z (CT )), we have then

β(‖CT ‖F − ‖CT − t(∆C)‖F + ‖CT i,z‖F − ‖CT i,z + t(∆C)‖F ) ≤ B. (10)

We now derive a bound for B. In the following, z′
kj

∈ T denotes the jth landmark associated

to zk ∈ T such that flandT
(zk, z′

kj
) = 1 in T , and z′i

kj
∈ T i,z the jth landmark associated
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to zi
k
∈ T i,z such that fland

T i,z
(zi

k
, z′i

kj
) = 1 in T i,z .

B ≤ |LT (CT − t∆C) − LT i,z (CT − t∆C) − (LT (CT ) − LT i,z (CT ))|

≤
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NT NL
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This inequality is obtained by developing the sum of the first two terms of the second line.
The examples zi in T and z in T i,z have NL landmarks defined by flandT

and fland
T i,z

respectively.
Note that the samples of NT − 1 elements T\{zi} and T i,z\{z} are the same and thus
zk = zi

k
when k 6= i. Therefore, for any zk ∈ T\{zi}, the sets of landmarks L

zk
T

= {z′
kj

∈

T |flandT
(zk, z′

kj
) = 1} and L

zk

T i,z = {z′i
kj

∈ T i,z |fland
T i,z

(zk, z′i
kj

) = 1} differ on at most

two elements, say zi, z
′
kj2

∈ L
zk
T

\L
zk

T i,z and z, z′i
kj1

∈ L
zk

T i,z\L
zk
T

. Thus, some terms cancel

out and we have:

B ≤
1

NT NL
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The first two lines of the absolute value can be bounded by:

(2(NT − 1) + NL) sup
z1,z2∈T

z3,z4∈T i,z

|V (CT − t∆C, z1, z2) − V (CT − t∆C, z3, z4)|.

The same analysis can be done for the part in parentheses of the last line of the absolute
value and we can take the pair of examples in T and in T i,z maximizing the whole absolute
value to obtain the next inequality:

B ≤
2(NT − 1) + NL

NT NL

sup
z1,z2∈T

z3,z4∈T i,z

|V (CT − t∆C, z1, z2) − V (CT − t∆C, z3, z4)

− (V (CT , z1, z2) − V (CT , z3, z4))| .



Good Edit Similarity Learning by Loss Minimization 31

We continue by applying a reordering of the terms and the triangular inequality to get the
next result:

B ≤
2(NT − 1) + NL

NT NL

 

sup
z1,z2∈T

|V (CT − t∆C, z1, z2) − V (CT , z1, z2)|+

sup
z3,z4∈T i,z

|V (CT − t∆C, z3, z4) − V (CT , z3, z4)|

!

.

We then use twice the k-lipschitz property of V which leads to:

B ≤
(2NT + NL)

NT NL

2k‖ − t∆C‖F

≤
(2NT + NL)

NT NL

2kt‖∆C‖F .

Then, by applying this bound on B from inequality (10), we get the lemma. ⊓⊔

A.2 Proof of Lemma 2

Lemma 2 For any learning method of estimation error DT and satisfying a uniform sta-

bility in κ
NT

, we have ET [DT ] ≤ 2κ
NT

.

Proof First recall that for any T, z, z′, by hypothesis of uniform stability we have:

|V (CT , z, z′) − V (CT k,z , z, z′)| ≤ sup
z1,z2

|V (CT , z1, z2) − V (CT k,z , z1, z2)| ≤
κ

NT

.

Now, we can derive a bound for ET [DT ].

ET [DT ] ≤ ET [Ez,z′ [V (CT , z, z′)] − LT (CT )]

≤ ET,z,z′ [|V (CT , z, z′) −
1

NT

NT
X

k=1

1

NL

NL
X

j=1

V (CT , zk, z′kj
)|]

≤ ET,z,z′ [|
1

NT

NT
X

k=1

1

NL

NL
X

j=1

(V (CT , z, z′) − V (CT k,z , zk, z′kj
) +

V (CT k,z , zk, z′kj
) − V (CT , zk, z′kj

))|]

≤ ET,z,z′ [|
1

NT

NT
X

k=1

1

NL

NL
X

j=1

(V (CT , z, z′) − V (CT k,z , zk, z′kj
))|] +

1

NT

NT
X

k=1

1

NL

NL
X

j=1

ET,z,z′ [|V (CT k,z , zk, z′kj
) − V (CT , zk, z′kj

)|]

≤ ET,z,z′ [|
1

NT

NT
X

k=1

1

NL

NL
X

j=1

(V (CT , z, z′) − V (CT k,z , zk, z′kj
))|] +

κ

NT

.

The last inequality is obtained by applying the hypothesis of uniform stability to the second
part of the sum. Now, since T, z and z′ are i.i.d. from distribution P , we do not change the
expected value by replacing one point with another and thus:

ET,z,z′ [|V (CT , z, z′) − V (CT , zk, z′)|] = ET,z,z′ [|V (Cz,k
T

, zk, z′) − V (CT , zk, z′)|].
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Then we get the result by applying this trick twice on the first element of the sum:

ET [DT ] ≤ ET,z,z′ [|
1

NT

NT
X

k=1

1

NL

NL
X

j=1

(V (CT k,z , zk, z′) − V (CT k,z , zk, z′kj
))|] +

κ

NT

≤ ET,z,z′ [|
1

NT

NT
X

k=1

1

NL

NL
X

j=1

(V (C
{T k,z}

kj,z′ , zk, z′kj
) − V (CT k,z , zk, z′kj

))|] +
κ

NT

≤
κ

NT

+
κ

NT

.

⊓⊔

A.3 Proof of Lemma 3

Lemma 3 For any edit cost matrix learned by GESLV using NT training examples and

NL landmarks, and any loss function V satisfying (σ, m)-admissibility, we have the follow-

ing bound:

∀i, 1 ≤ i ≤ NT , ∀z, |DT − DT i,z | ≤
2κ

NT

+
(2NT + NL)(2σ + m)

NT NL

.

Proof First, we derive a bound on |DT − DT i,z |.

|DT − DT i,z |

= |L(CT ) − LT (CT ) − (L(CT i,z ) − LT i,z (CT i,z ))|

= |L(CT ) − LT (CT ) − L(CT i,z ) + LT i,z (CT i,z ) + LT (CT i,z ) − LT (CT i,z )|

= |L(CT ) − L(CT i,z ) + LT (CT i,z ) − LT (CT ) + LT i,z (CT i,z ) − LT (CT i,z )|

≤ |L(CT ) − L(CT i,z )| + |LT (CT i,z ) − LT (CT )| + |LT i,z (CT i,z ) − LT (CT i,z )|

≤ Ez1,z2
[|V (CT , z1, z2) − V (CT i,z , z1, z2)|] +

1

NT

NT
X

k=1

1

NL

NL
X

j=1

|V (CT i,z , zk, z′kj
) − V (CT , zk, z′kj

)| + |LT i,z (CT i,z ) − LT (CT i,z )|

≤ 2
κ

NT

+ |LT i,z (CT i,z ) − LT (CT i,z )| by using the hypothesis of stability twice.

Now, proving Lemma 3 boils down to bounding the last term above. Using arguments similar
to those used in the second part of the proof of Lemma 1, we get

|LT i,z (CT i,z ) − LT (CT i,z )| ≤
(2NT + NL)

NT NL

sup
z1,z2∈T

z3,z4∈T i,z

|V (CT i,z , z1, z2) − V (CT i,z , z3, z4)|.

Now by the (σ, m)-admissibility of V , we have that:

|V (CT i,z , z1, z2) − V (CT i,z , z3, z4)| ≤ σ|l1l2 − l3l4| + m ≤ 2σ + m,

since whatever the labels, |l1l2 − l3l4| ≤ 2. This leads us to the desired result. ⊓⊔

A.4 Proof of Lemma 4

Lemma 4 The function V used in GESLHL is k-lipschitz with k = W .
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Proof We need to bound |V (C, z, z′) − V (C′, z, z′)| which implies to consider two cases:
when z and z’ have the same labels and when they have different labels. We consider here
the first case, the second one can be easily derived from the first one (B1 playing the same
role as B2).

|V (C, z, z′) − V (C′, z, z′)| ≤ |[
X

l,c

Cl,c#l,c(x, x′) − B2]+ − [
X

l,c

C′
l,c#l,c(x, x′) − B2]+|

≤ |
X

l,c

Cl,c#l,c(x, x′) − B2 − (
X

l,c

C′
l,c#l,c(x, x′) − B2)|

≤ |
X

l,c

(Cl,c − C′
l,c)#l,c(x, x′)|

≤ ‖C − C′‖F‖#(x, x′)‖F

≤ W‖C − C′‖F .

The second line is obtained by the 1-lipschitz property of the hinge loss:

|[X]+ − [Y ]+| ≤ |X − Y |.

The fourth one comes from the Cauchy-Schwartz inequality:

|
n
X

i=1

m
X

j=1

xijyij | ≤ ‖x‖F‖y‖F .

Finally, since by hypothesis ‖#(z, z′)‖F ≤ W , the lemma holds. ⊓⊔

A.5 Lemma 5

Lemma 5 Let (CT , B1, B2) an optimal solution learned by GESLHL from a training sam-

ple T , and let Bγ = max(ηγ ,−log(1/2)). Then ‖CT ‖F ≤
q

Bγ

β
.

Proof Since (CT , B1, B2) is an optimal solution, the value reached by the objective function
is lower than the one obtained with (0, Bγ , 0), where 0 denotes the null matrix:

NT
X

k=1

1

NT

NL
X

j=1

1

NL

V (C, zk, z′kj
) + β‖CT ‖2

F ≤

NT
X

k=1

1

NT

NL
X

j=1

1

NL

V (0, zk, z′kj
) + β‖0‖2

F ≤ Bγ .

For the last inequality, note that regardless of the possible labels of zk and z′
kj

, V (0, zk, z′
kj

)

is bounded either by Bγ or 0.

Since
PNT

k=1

1

NT

PNL
j=1

1

NL
V (C, zk, z′

kj
) ≥ 0, we get β‖CT ‖2

F ≤ Bγ . ⊓⊔
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