All entries.
Showing Items 81-90 of 628 on page 9 of 63: First Previous 4 5 6 7 8 9 10 11 12 13 14 Next Last

Logo r-cran-klaR 0.6-8

by r-cran-robot - March 27, 2013, 00:00:00 CET [ Project Homepage BibTeX Download ] 19201 views, 4030 downloads, 1 subscription

About: Classification and visualization

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:05.722314


Logo BCPy2000 17374

by jez - July 8, 2010, 22:11:24 CET [ Project Homepage BibTeX Download ] 19139 views, 3557 downloads, 1 subscription

About: BCPy2000 provides a platform for rapid, flexible development of experimental Brain-Computer Interface systems based on the BCI2000.org project. From the developer's point of view, the implementation [...]

Changes:

Bugfixes and tuneups, and an expanded set of (some more-, some less-documented, optional tools)


Logo r-cran-GAMBoost 1.2-2

by r-cran-robot - April 1, 2013, 00:00:04 CET [ Project Homepage BibTeX Download ] 19065 views, 3647 downloads, 1 subscription

About: Generalized linear and additive models by likelihood based boosting

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:04.893311


Logo JMLR MOA Massive Online Analysis Nov-13

by abifet - April 4, 2014, 03:50:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 19010 views, 6607 downloads, 1 subscription

About: Massive Online Analysis (MOA) is a real time analytic tool for data streams. It is a software environment for implementing algorithms and running experiments for online learning from evolving data streams. MOA includes a collection of offline and online methods as well as tools for evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analysis, and it is released under the GNU GPL license.

Changes:

New version November 2013


Logo Orange 2.6

by janez - February 14, 2013, 18:15:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18268 views, 3541 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: Orange is a component-based machine learning and data mining software. It includes a friendly yet powerful and flexible graphical user interface for visual programming. For more advanced use(r)s, [...]

Changes:

The core of the system (except the GUI) no longer includes any GPL code and can be licensed under the terms of BSD upon request. The graphical part remains under GPL.

Changed the BibTeX reference to the paper recently published in JMLR MLOSS.


About: This toolbox provides functions for maximizing and minimizing submodular set functions, with applications to Bayesian experimental design, inference in Markov Random Fields, clustering and others.

Changes:
  • Modified specification of optional parameters (using sfo_opt)
  • Added sfo_ls_lazy for maximizing nonnegative submodular functions
  • Added sfo_fn_infogain, sfo_fn_lincomb, sfo_fn_invert, ...
  • Added additional documentation and more examples
  • Now Octave ready

Logo r-cran-rgenoud 5.7-8.1

by r-cran-robot - June 3, 2012, 00:00:00 CET [ Project Homepage BibTeX Download ] 18181 views, 3937 downloads, 1 subscription

About: R version of GENetic Optimization Using Derivatives

Changes:

Fetched by r-cran-robot on 2013-04-01 00:00:08.101900


Logo JMLR Surrogate Modeling Toolbox 7.0.2

by dgorissen - September 4, 2010, 07:48:59 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 17860 views, 4851 downloads, 1 subscription

About: The SUMO Toolbox is a Matlab toolbox that automatically builds accurate surrogate models (also known as metamodels or response surface models) of a given data source (e.g., simulation code, data set, script, ...) within the accuracy and time constraints set by the user. The toolbox minimizes the number of data points (which it selects automatically) since they are usually expensive.

Changes:

Incremental update, fixing some cosmetic issues, coincides with JMLR publication.


Logo Maja Machine Learning Framework 1.0

by jhm - September 13, 2011, 15:13:56 CET [ Project Homepage BibTeX Download ] 17019 views, 3533 downloads, 1 subscription

About: The Maja Machine Learning Framework (MMLF) is a general framework for problems in the domain of Reinforcement Learning (RL) written in python. It provides a set of RL related algorithms and a set of benchmark domains. Furthermore it is easily extensible and allows to automate benchmarking of different agents.

Changes:
  • Experiments can now be invoked from the command line
  • Experiments can now be "scripted"
  • MMLF Experimenter contains now basic module for statistical hypothesis testing
  • MMLF Explorer can now visualize the model that has been learned by an agent

Logo LIBOL 0.3.0

by stevenhoi - December 12, 2013, 15:26:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16958 views, 6267 downloads, 2 subscriptions

About: LIBOL is an open-source library with a family of state-of-the-art online learning algorithms for machine learning and big data analytics research. The current version supports 16 online algorithms for binary classification and 13 online algorithms for multiclass classification.

Changes:

In contrast to our last version (V0.2.3), the new version (V0.3.0) has made some important changes as follows:

• Add a template and guide for adding new algorithms;

• Improve parameter settings and make documentation clear;

• Improve documentation on data formats and key functions;

• Amend the "OGD" function to use different loss types;

• Fixed some name inconsistency and other minor bugs.


Showing Items 81-90 of 628 on page 9 of 63: First Previous 4 5 6 7 8 9 10 11 12 13 14 Next Last