All entries.
Showing Items 71-80 of 598 on page 8 of 60: First Previous 3 4 5 6 7 8 9 10 11 12 13 Next Last

Logo JMLR SSA Toolbox 1.3

by paulbuenau - January 24, 2012, 15:51:02 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16147 views, 4706 downloads, 1 subscription

About: The SSA Toolbox is an efficient, platform-independent, standalone implementation of the Stationary Subspace Analysis algorithm with a friendly graphical user interface and a bridge to Matlab. Stationary Subspace Analysis (SSA) is a general purpose algorithm for the explorative analysis of non-stationary data, i.e. data whose statistical properties change over time. SSA helps to detect, investigate and visualize temporal changes in complex high-dimensional data sets.

  • Various bugfixes.

Logo BCPy2000 17374

by jez - July 8, 2010, 22:11:24 CET [ Project Homepage BibTeX Download ] 16063 views, 3021 downloads, 1 subscription

About: BCPy2000 provides a platform for rapid, flexible development of experimental Brain-Computer Interface systems based on the project. From the developer's point of view, the implementation [...]


Bugfixes and tuneups, and an expanded set of (some more-, some less-documented, optional tools)

Logo r-cran-glmnet 1.9-3

by r-cran-robot - March 1, 2013, 00:00:00 CET [ Project Homepage BibTeX Download ] 16061 views, 3530 downloads, 1 subscription

About: Lasso and elastic-net regularized generalized linear models


Fetched by r-cran-robot on 2013-04-01 00:00:05.081872

Logo DAL 1.1

by ryota - February 18, 2014, 19:07:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15959 views, 2687 downloads, 1 subscription

About: DAL is an efficient and flexibible MATLAB toolbox for sparse/low-rank learning/reconstruction based on the dual augmented Lagrangian method.

  • Supports weighted lasso (dalsqal1.m, dallral1.m)
  • Supports weighted squared loss (dalwl1.m)
  • Bug fixes (group lasso and elastic-net-regularized logistic regression)

Logo Malheur 0.5.4

by konrad - December 25, 2013, 13:20:31 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15577 views, 2989 downloads, 1 subscription

About: Automatic Analysis of Malware Behavior using Machine Learning


Support for new version of libarchive. Minor bug fixes.

Logo Libra 1.1.2c

by lowd - June 25, 2015, 00:10:25 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15509 views, 3390 downloads, 3 subscriptions

About: The Libra Toolkit is a collection of algorithms for learning and inference with discrete probabilistic models, including Bayesian networks, Markov networks, dependency networks, sum-product networks, arithmetic circuits, and mixtures of trees.


Version 1.1.2c (6/24/2015):

  • Libra can now be installed via OPAM as well. To install OPAM, see: . Then run: "opam install libra-tk".
  • Updated documentation to describe OPAM installation.

Logo BayesOpt, a Bayesian Optimization toolbox 0.7.2

by rmcantin - October 10, 2014, 19:12:59 CET [ Project Homepage BibTeX Download ] 15405 views, 3041 downloads, 4 subscriptions

About: BayesOpt is an efficient, C++ implementation of the Bayesian optimization methodology for nonlinear-optimization, experimental design and stochastic bandits. In the literature it is also called Sequential Kriging Optimization (SKO) or Efficient Global Optimization (EGO). There are also interfaces for C, Matlab/Octave and Python.


-Fixed bugs and doc typos

Logo r-cran-klaR 0.6-8

by r-cran-robot - March 27, 2013, 00:00:00 CET [ Project Homepage BibTeX Download ] 15059 views, 3193 downloads, 1 subscription

About: Classification and visualization


Fetched by r-cran-robot on 2013-04-01 00:00:05.722314

About: This toolbox provides functions for maximizing and minimizing submodular set functions, with applications to Bayesian experimental design, inference in Markov Random Fields, clustering and others.

  • Modified specification of optional parameters (using sfo_opt)
  • Added sfo_ls_lazy for maximizing nonnegative submodular functions
  • Added sfo_fn_infogain, sfo_fn_lincomb, sfo_fn_invert, ...
  • Added additional documentation and more examples
  • Now Octave ready

Logo ELKI 0.7.0-20150828

by erich - September 17, 2015, 10:20:30 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14646 views, 2687 downloads, 4 subscriptions

About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods.


Additions and Improvements from ELKI 0.6.0:

  • Uncertain data types, and clustering algorithms for uncertain data.

  • Major refactoring of distances - removal of Distance values and removed support for non-double-valued distance functions. While this reduces the generality of ELKI, we could remove about 2.5% of the codebase by not having to have optimized codepaths for double-distance anymore. Generics for distances were present in almost any distance-based algorithm, and we were also happy to reduce the use of generics this way. Support for non-double-valued distances can trivially be added again, e.g. by adding the specialization one level higher: at the query instead of the distance level, for example.

  • In this process, we also removed the Generics from NumberVector. The object-based get was deprecated for a good reason long ago, and e.g. doubleValue are more efficient (even for non-DoubleVectors).

  • Dropped some long-deprecated classes

Clustering algorithms:


  • speedups for some initialization heuristics
  • K-means++ initialization no longer squares distances (again)
  • farthest-point heuristics now uses minimum instead of sum (renamed)
  • additional evaluation criteria
  • Elkan's and Hamerly's faster k-means variants

CLARA clustering


Hierarchical clustering

  • Renamed naive algorithm to AGNES
  • Anderbergs algorithm (faster than AGNES, slower than SLINK)
  • CLINK for complete linkage clustering in O(n²) time, O(n) memory
  • Simple extraction from HDBSCAN
  • "Optimal" extraction from HDBSCAN
  • HDBSCAN, in two variants

LSDBC clustering

EM clustering was refactored and moved into its own package. The new version is much more extensible.

Parallel computation framework, and some parallelized algorithms

  • Parallel k-means
  • Parallel LOF and variants


  • LibSVM format parser


  • kNN classification (with index acceleration)

Evaluation: Internal cluster evaluation:

  • Silhouette index
  • Simplified Silhouette index (faster)
  • Davis-Bouldin index
  • PBM index
  • Variance-Ratio-Criteria
  • Sum of squared errors
  • C-Index
  • Concordant pair indexes (Gamma, Tau)
  • Different noise handling strategies for internal indexes

Statistical dependence measures:

  • Distance correlation dCor.
  • Hoeffings D.
  • Some divergence / mutual information measures.

Distance functions:

  • Big refactoring.
  • Time series distances refactored, allow variable length series now.
  • Hellinger distance and kernel function.


  • Faster MDS implementation using power iterations.

Indexing improvements:

  • Precomputed distance matrix "index".
  • iDistance index (static only).
  • Inverted-list index for sparse data and cosine/arccosine distance.
  • cover tree index (static only).

Frequent Itemset Mining:

  • Improved APRIORI implementation.
  • FP-Growth added.
  • Eclat (basic version only) added.

Uncertain clustering:

  • Discrete and continuous data models
  • FDBSCAN clustering
  • UKMeans clustering
  • CKMeans clustering
  • Representative Uncertain Clustering (Meta-algorithm)
  • Center-of-mass meta Clustering (allows using other clustering algorithms on uncertain objects) (KDD'14)

Outlier detection changes / smaller improvements:

  • KDEOS outlier detection (SDM14)
  • k-means based outlier detection (distance to centroid) and Silhouette coefficient based approach (which does not work too well on the toy data sets - the lowest silhouette are usually where two clusters touch).
  • bug fix in kNN weight, when distances are tied and kNN yields more than k results.
  • kNN and kNN weight outlier have their k parameter changed: old 2NN outlier is now 1NN outlier, as commonly understood in classification literature (1 nearest neighbor ''other than the query object''; whereas in database literature the 1NN is usually the query object itself). You can get the old result back by decreasing k by one easily.
  • LOCI implementation is now only O(n^3 log n) instead of O(n^4).


  • MiniGUI has two "secret" new options: -minigui.last -minigui.autorun to load the last saved configuration and run it, for convenience.

  • Logging API has been extended, to make logging more convenient in a number of places (saving some lines for progress logging and timing).

Showing Items 71-80 of 598 on page 8 of 60: First Previous 3 4 5 6 7 8 9 10 11 12 13 Next Last