All entries.
Showing Items 491-500 of 567 on page 50 of 57: First Previous 45 46 47 48 49 50 51 52 53 54 55 Next Last

Logo CXXNET 0.1

by antinucleon - April 10, 2014, 02:47:08 CET [ Project Homepage BibTeX Download ] 1392 views, 349 downloads, 1 subscription

About: CXXNET (spelled as: C plus plus net) is a neural network toolkit build on mshadow(https://github.com/tqchen/mshadow). It is yet another implementation of (convolutional) neural network. It is in C++, with about 1000 lines of network layer implementations, easily configuration via config file, and can get the state of art performance.

Changes:

Initial Announcement on mloss.org.


Logo Reranker Framework 1.0

by zenog - October 29, 2012, 10:05:30 CET [ Project Homepage BibTeX Download ] 1392 views, 458 downloads, 1 subscription

About: ReFr is a software architecture for specifying, training and using reranking models.

Changes:

Initial Announcement on mloss.org.


Logo DRVQ 1.0.1-beta

by iavr - January 18, 2014, 17:26:34 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1389 views, 368 downloads, 1 subscription

About: DRVQ is a C++ library implementation of dimensionality-recursive vector quantization, a fast vector quantization method in high-dimensional Euclidean spaces under arbitrary data distributions. It is an approximation of k-means that is practically constant in data size and applies to arbitrarily high dimensions but can only scale to a few thousands of centroids. As a by-product of training, a tree structure performs either exact or approximate quantization on trained centroids, the latter being not very precise but extremely fast.

Changes:

Initial Announcement on mloss.org.


Logo Two stage Sparse Representation 1.0.0

by openpr_nlpr - December 2, 2011, 05:32:31 CET [ Project Homepage BibTeX Download ] 1389 views, 485 downloads, 1 subscription

About: This program implements a novel robust sparse representation method, called the two-stage sparse representation (TSR), for robust recognition on a large-scale database. Based on the divide and conquer strategy, TSR divides the procedure of robust recognition into outlier detection stage and recognition stage. The extensive numerical experiments on several public databases demonstrate that the proposed TSR approach generally obtains better classification accuracy than the state-of-the-art Sparse Representation Classification (SRC). At the same time, by using the TSR, a significant reduction of computational cost is reached by over fifty times in comparison with the SRC, which enables the TSR to be deployed more suitably for large-scale dataset.

Changes:

Initial Announcement on mloss.org.


Logo Evaluation toolkit 1.0

by openpr_nlpr - August 13, 2013, 08:58:25 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1372 views, 307 downloads, 1 subscription

About: This evaluation toolkit provides a unified framework for evaluating bag-of-words based encoding methods over several standard image classification datasets.

Changes:

Initial Announcement on mloss.org.


Logo Linear Discriminant Function Classifier 1.0.0

by openpr_nlpr - December 2, 2011, 05:27:27 CET [ Project Homepage BibTeX Download ] 1372 views, 390 downloads, 1 subscription

About: This program is a C++ implementation of Linear Discriminant Function Classifier. Discriminant functions such as perceptron criterion, cross entropy (CE) criterion, and least mean square (LMS) criterion (all for multi-class classification problems) are supported in it. The program uses a sparse-data structure to represent the feature vector to seek higher computational speed. Some other techniques such as online updating, weights averaging, gaussian prior regularization are also supported.

Changes:

Initial Announcement on mloss.org.


Logo Probabilistic Latent Semantic Indexing 1.0.0

by openpr_nlpr - December 2, 2011, 04:42:02 CET [ Project Homepage BibTeX Download ] 1371 views, 369 downloads, 1 subscription

About: Hofmann, T. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd ACM-SIGIR International Conference on Research and Development in Information Retrieval (Berkeley,Calif.), ACM, New York, 50–57.

Changes:

Initial Announcement on mloss.org.


Logo A Parallel LDA Learning Toolbox 1.0

by yanjianfeng - January 24, 2014, 11:48:07 CET [ BibTeX Download ] 1366 views, 459 downloads, 1 subscription

About: We introduces PLL, a parallel LDA learning toolbox for big topic modeling.

Changes:

Fix some compiling errors.


About: Kaiye Wang, Ran He, Wei Wang, Liang Wang, Tiuniu Tan. Learning Coupled Feature Spaces for Cross-modal Matching. In ICCV, 2013.

Changes:

Initial Announcement on mloss.org.


Logo Implementation of the DMV and CCM Parsers 0.2.0

by francolq - September 24, 2013, 07:06:46 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1354 views, 308 downloads, 1 subscription

About: This package includes implementations of the CCM, DMV and DMV+CCM parsers from Klein and Manning (2004), and code for testing them with the WSJ, Negra and Cast3LB corpuses (English, German and Spanish respectively). A detailed description of the parsers can be found in Klein (2005).

Changes:

Initial Announcement on mloss.org.


Showing Items 491-500 of 567 on page 50 of 57: First Previous 45 46 47 48 49 50 51 52 53 54 55 Next Last