All entries.
Showing Items 431-440 of 674 on page 44 of 68: First Previous 39 40 41 42 43 44 45 46 47 48 49 Next Last

Logo PyScriptClassifier 0.3.0

by cjb60 - November 25, 2015, 04:07:51 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5621 views, 1256 downloads, 2 subscriptions

About: Easily prototype WEKA classifiers and filters using Python scripts.

Changes:

0.3.0

  • Filters have now been implemented.
  • Classifier and filter classes satisfy base unit tests.

0.2.1

  • Can now choose to save the script in the model using the -save flag.

0.2.0

  • Added Python 3 support.
  • Added uses decorator to prevent non-essential arguments from being passed.
  • Fixed nasty bug where imputation, binarisation, and standardisation would not actually be applied to test instances.
  • GUI in WEKA now displays the exception as well.
  • Fixed bug where single quotes in attribute values could mess up args creation.
  • ArffToPickle now recognises class index option and arguments.
  • Fix nasty bug where filters were not being saved and were made from scratch from test data.

0.1.1

  • ArffToArgs gets temporary folder in a platform-independent way, instead of assuming /tmp/.
  • Can now save args in ArffToPickle using save.

0.1.0

  • Initial release.

About: This letter proposes a new multiple linear regression model using regularized correntropy for robust pattern recognition. First, we motivate the use of correntropy to improve the robustness of the classicalmean square error (MSE) criterion that is sensitive to outliers. Then an l1 regularization scheme is imposed on the correntropy to learn robust and sparse representations. Based on the half-quadratic optimization technique, we propose a novel algorithm to solve the nonlinear optimization problem. Second, we develop a new correntropy-based classifier based on the learned regularization scheme for robust object recognition. Extensive experiments over several applications confirm that the correntropy-based l1 regularization can improve recognition accuracy and receiver operator characteristic curves under noise corruption and occlusion.

Changes:

Initial Announcement on mloss.org.


Logo Thresholding program 1.0

by openpr_nlpr - March 1, 2012, 03:18:52 CET [ Project Homepage BibTeX Download ] 5601 views, 857 downloads, 1 subscription

About: This is demo program on global thresholding for image of bright small objects, such as aircrafts in airports. the program include four method, otsu,2D-Tsallis,PSSIM, Smoothnees Method.

Changes:

Initial Announcement on mloss.org.


Logo GESL v1.01

by bellet - May 15, 2015, 11:54:04 CET [ BibTeX BibTeX for corresponding Paper Download ] 5565 views, 1955 downloads, 1 subscription

About: Learning string edit distance / similarity from data

Changes:

Added datasets used in the experiments of the paper


Logo Uncorrelated Multilinear Principal Component Analysis 1.0

by hplu - June 18, 2012, 17:23:52 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5541 views, 1230 downloads, 1 subscription

About: A Matlab implementation of Uncorrelated Multilinear PCA (UMPCA) for dimensionality reduction of tensor data via tensor-to-vector projection

Changes:

Initial Announcement on mloss.org.


Logo Epistatic MAP Imputation 1.1

by colm - November 25, 2010, 21:01:10 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5531 views, 1260 downloads, 1 subscription

About: Epistatic miniarray profiles (E-MAPs) are a high-throughput approach capable of quantifying aggravating or alleviating genetic interactions between gene pairs. The datasets resulting from E-MAP experiments typically take the form of a symmetric pairwise matrix of interaction scores. These datasets have a significant number of missing values - up to 35% - that can reduce the effectiveness of some data analysis techniques and prevent the use of others. This project contains nearest neighbor based tools for the imputation and prediction of these missing values. The code is implemented in Python and uses a nearest neighbor based approach. Two variants are used - a simple weighted nearest neighbors, and a local least squares based regression.

Changes:

Initial Announcement on mloss.org.


Logo LogRegCrowds, Logistic Regression from Crowds 1.0

by fmpr - January 16, 2017, 18:10:57 CET [ Project Homepage BibTeX Download ] 5524 views, 1394 downloads, 3 subscriptions

About: LogReg-Crowds is a collection of Julia implementations of various approaches for learning a logistic regression model multiple annotators and crowds, namely the works of Raykar et al. (2010), Rodrigues et al. (2013) and Dawid and Skene (1979).

Changes:

Initial Announcement on mloss.org. Added GitHub page.


Logo MLlib 0.8

by atalwalkar - October 10, 2013, 00:56:25 CET [ Project Homepage BibTeX Download ] 5504 views, 1061 downloads, 1 subscription

About: MLlib provides a distributed machine learning (ML) library to address the growing need for scalable ML. MLlib is developed in Spark (http://spark.incubator.apache.org/), a cluster computing system designed for iterative computation. Moreover, it is a component of a larger system called MLbase (www.mlbase.org) that aims to provide user-friendly distributed ML functionality both for ML researchers and domain experts. MLlib currently consists of scalable implementations of algorithms for classification, regression, collaborative filtering and clustering.

Changes:

Initial Announcement on mloss.org.


About: Efficient and Flexible Distributed/Mobile Deep Learning Framework, for python, R, Julia and more

Changes:

This version comes with Distributed and Mobile Examples


Logo PLEASD 0.1

by heroesneverdie - September 10, 2012, 03:53:26 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 5503 views, 1254 downloads, 1 subscription

About: PLEASD: A Matlab Toolbox for Structured Learning

Changes:

Initial Announcement on mloss.org.


Showing Items 431-440 of 674 on page 44 of 68: First Previous 39 40 41 42 43 44 45 46 47 48 49 Next Last