Showing Items 421430 of 635 on page 43 of 64: First Previous 38 39 40 41 42 43 44 45 46 47 48 Next Last
About: Large scale, distributed graph processing made easy. Changes:Bug fixes, Graph generators

About: The pboost toolbox is a set of command line programs and a Matlab wrapper for mining frequent subsequences and sequence classification. For our purposes, a sequence is defined an ordered sequence of [...] Changes:Initial Announcement on mloss.org.

About: OpenPRNBEM is an C++ implementation of Naive Bayes Classifier, which is a wellknown generative classification algorithm for the application such as text classification. The Naive Bayes algorithm requires the probabilistic distribution to be discrete. OpenPRNBEM uses the multinomial event model for representation. The maximum likelihood estimate is used for supervised learning, and the expectationmaximization estimate is used for semisupervised and unsupervised learning. Changes:Initial Announcement on mloss.org.

About: A Matlab implementation of Uncorrelated Multilinear PCA (UMPCA) for dimensionality reduction of tensor data via tensortovector projection Changes:Initial Announcement on mloss.org.

About: Fast Multidimensional GP Inference using Projected Additive Approximation Changes:Initial Announcement on mloss.org.

About: This is a Matlab/C++ "toolbox" of code for learning and inference with graphical models. It is focused on parameter learning using marginalization in the hightreewidth setting. Changes:Initial Announcement on mloss.org.

About: The Computational Infrastructure for Operations Research (COINOR) project is an initiative to spur the development of opensource software for the operations research community. Changes:Initial Announcement on mloss.org.

About: PLEASD: A Matlab Toolbox for Structured Learning Changes:Initial Announcement on mloss.org.

About: ClowdFlows is a web based platform for service oriented data mining publicly available at http://clowdflows.org . A web based interface allows users to construct data mining workflows that are hosted on the web and can be (if allowed by the author) accessed by anyone by following a URL of the workflow. Changes:Initial Announcement on mloss.org.

About: This program is a C++ implementation of Naive Bayes Classifier, which is a wellknown generative classification algorithm for the application such as text classification. The Naive Bayes algorithm requires the probabilistic distribution to be discrete. The program uses the multinomial event model for representation, the maximum likelihood estimate with a Laplace smoothing technique for learning parameters. A sparsedata structure is defined to represent the feature vector in the program to seek higher computational speed. Changes:Initial Announcement on mloss.org.
