All entries.
Showing Items 321-330 of 590 on page 33 of 59: First Previous 28 29 30 31 32 33 34 35 36 37 38 Next Last

Logo SnOB beta

by risi - October 5, 2008, 21:39:18 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4407 views, 960 downloads, 1 subscription

About: SnOB is a C++ library implementing fast Fourier transforms on the symmetric group (group of permutations). Such Fourier transforms are used by some ranking and identity management algorithms, as [...]

Changes:

Initial Announcement on mloss.org.


Logo HDDM 0.5

by Wiecki - April 24, 2013, 02:53:07 CET [ Project Homepage BibTeX Download ] 4401 views, 1115 downloads, 1 subscription

About: HDDM is a python toolbox for hierarchical Bayesian parameter estimation of the Drift Diffusion Model (via PyMC). Drift Diffusion Models are used widely in psychology and cognitive neuroscience to study decision making.

Changes:
  • New and improved HDDM model with the following changes:
    • Priors: by default model will use informative priors (see http://ski.clps.brown.edu/hddm_docs/methods.html#hierarchical-drift-diffusion-models-used-in-hddm) If you want uninformative priors, set informative=False.
    • Sampling: This model uses slice sampling which leads to faster convergence while being slower to generate an individual sample. In our experiments, burnin of 20 is often good enough.
    • Inter-trial variablity parameters are only estimated at the group level, not for individual subjects.
    • The old model has been renamed to HDDMTransformed.
    • HDDMRegression and HDDMStimCoding are also using this model.
  • HDDMRegression takes patsy model specification strings. See http://ski.clps.brown.edu/hddm_docs/howto.html#estimate-a-regression-model and http://ski.clps.brown.edu/hddm_docs/tutorial_regression_stimcoding.html#chap-tutorial-hddm-regression
  • Improved online documentation at http://ski.clps.brown.edu/hddm_docs
  • A new HDDM demo at http://ski.clps.brown.edu/hddm_docs/demo.html
  • Ratcliff's quantile optimization method for single subjects and groups using the .optimize() method
  • Maximum likelihood optimization.
  • Many bugfixes and better test coverage.
  • hddm_fit.py command line utility is depracated.

Logo GraphDemo 1.0

by ule - November 27, 2007, 20:11:21 CET [ Project Homepage BibTeX Download ] 4377 views, 1245 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 3 votes)

About: The GraphDemo provides Matlab GUIs to explore similarity graphs and their use in machine learning. It aims to highlight the behavior of different kinds of similarity graphs and to demonstrate their [...]

Changes:

Initial Announcement on mloss.org.


Logo mldata.org svn-r1070-Apr-2011

by sonne - April 8, 2011, 10:15:49 CET [ Project Homepage BibTeX Download ] 4375 views, 914 downloads, 1 subscription

About: The source code of the mldata.org site - a community portal for machine learning data sets.

Changes:

Initial Announcement on mloss.org.


Logo svmPRAT 1.0

by rangwala - December 28, 2009, 00:27:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4349 views, 1105 downloads, 1 subscription

About: BACKGROUND:Over the last decade several prediction methods have been developed for determining the structural and functional properties of individual protein residues using sequence and sequence-derived information. Most of these methods are based on support vector machines as they provide accurate and generalizable prediction models. RESULTS:We present a general purpose protein residue annotation toolkit (svmPRAT) to allow biologists to formulate residue-wise prediction problems. svmPRAT formulates the annotation problem as a classification or regression problem using support vector machines. One of the key features of svmPRAT is its ease of use in incorporating any user-provided information in the form of feature matrices. For every residue svmPRAT captures local information around the reside to create fixed length feature vectors. svmPRAT implements accurate and fast kernel functions, and also introduces a flexible window-based encoding scheme that accurately captures signals and pattern for training eective predictive models. CONCLUSIONS:In this work we evaluate svmPRAT on several classification and regression problems including disorder prediction, residue-wise contact order estimation, DNA-binding site prediction, and local structure alphabet prediction. svmPRAT has also been used for the development of state-of-the-art transmembrane helix prediction method called TOPTMH, and secondary structure prediction method called YASSPP. This toolkit developed provides practitioners an efficient and easy-to-use tool for a wide variety of annotation problems. Availability: http://www.cs.gmu.edu/~mlbio/svmprat/

Changes:

Initial Announcement on mloss.org.


Logo Encog Machine Learning Framework 3.2

by jeffheaton - July 5, 2014, 23:47:06 CET [ Project Homepage BibTeX Download ] 4335 views, 1474 downloads, 1 subscription

About: Encog is a Machine Learning framework for Java, C#, Javascript and C/C++ that supports SVM's, Genetic Programming, Bayesian Networks, Hidden Markov Models and other algorithms.

Changes:

Changes for Encog 3.2:

Issue #53: Fix Out Of Range Bug In BasicMLSequenceSet. Issue #52: Unhandled exception in Encog.Util.File.ResourceLoader.CreateStream (ResourceLoader.cs) Issue #50: Concurrency bugs in PruneIncremental Issue #48: Unit Tests Failing - TestHessian Issue #46: Couple of small fixes - Temporal DataSet and SCG training Issue #45: Fixed EndMinutesStrategy to correctly evaluate ShouldStop after the specified number of minutes have elapsed. Issue #44: Encog.ML.Data.Basic.BasicMLDataPairCentroid.Add() & .Remove() Issue #43: Unit Tests Failing - Matrix not full rank Issue #42: Nuget - NuSpec Issue #36: Load Examples easier


Logo A Pattern Recognizer In Lua with ANNs v0.3.1

by pakozm - May 30, 2014, 10:49:10 CET [ Project Homepage BibTeX Download ] 4330 views, 1046 downloads, 2 subscriptions

About: APRIL-ANN toolkit (A Pattern Recognizer In Lua with Artificial Neural Networks). This toolkit incorporates ANN algorithms (as dropout, stacked denoising auto-encoders, convolutional neural networks), with other pattern recognition methods as hidden makov models (HMMs) among others.

Changes:
  • Removed bugs.
  • Added Travis CI support.
  • KNN and clustering algorithms.
  • ZCA and PCA whitening.
  • Quickprop and ASGD optimization algorithms.
  • QLearning trainer.
  • Sparse float matrices are available in CSC an CSR formats.
  • Compilation with Homebrew and MacPorts available.
  • Compilation issues in Ubuntu 12.04 solved.

Logo Action Recognition by Dense Trajectories 1.0

by openpr_nlpr - June 6, 2012, 11:38:07 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4323 views, 801 downloads, 1 subscription

About: The code is for computing state-of-the-art video descriptors for action recognition. The most up-to-date information can be found at: http://lear.inrialpes.fr/people/wang/dense_trajectories

Changes:

Initial Announcement on mloss.org.


Logo r-cran-boost 1.0-0

by r-cran-robot - December 9, 2004, 22:57:00 CET [ Project Homepage BibTeX Download ] 4319 views, 1169 downloads, 1 subscription

About: Boosting Methods for Real and Simulated Data

Changes:

Fetched by r-cran-robot on 2009-06-24 07:16:09.478727


Logo BCILAB 1.0-beta

by chkothe - January 6, 2012, 23:47:55 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4305 views, 885 downloads, 1 subscription

About: MATLAB toolbox for advanced Brain-Computer Interface (BCI) research.

Changes:

Initial Announcement on mloss.org.


Showing Items 321-330 of 590 on page 33 of 59: First Previous 28 29 30 31 32 33 34 35 36 37 38 Next Last