Showing Items 101110 of 640 on page 11 of 64: First Previous 6 7 8 9 10 11 12 13 14 15 16 Next Last
About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems Changes:

About: Model Monitor is a Java toolkit for the systematic evaluation of classifiers under changes in distribution. It provides methods for detecting distribution shifts in data, comparing the performance [...] Changes:Improved AUROC calculation. Several minor bug fixes.

About: FABIA is a biclustering algorithm that clusters rows and columns of a matrix simultaneously. Consequently, members of a row cluster are similar to each other on a subset of columns and, analogously, members of a column cluster are similar to each other on a subset of rows. Biclusters are found by factor analysis where both the factors and the loading matrix are sparse. FABIA is a multiplicative model that extracts linear dependencies between samples and feature patterns. Applications include detection of transcriptional modules in gene expression data and identification of haplotypes/>identity by descent< consisting of rare variants obtained by next generation sequencing. Changes:CHANGES IN VERSION 2.8.0NEW FEATURES
CHANGES IN VERSION 2.4.0
CHANGES IN VERSION 2.3.1NEW FEATURES
2.0.0:
1.4.0:

About: Improved Predictors Changes:Fetched by rcranrobot on 20130401 00:00:05.613011

About: RLLib is a lightweight C++ template library that implements incremental, standard, and gradient temporaldifference learning algorithms in Reinforcement Learning. It is an optimized library for robotic applications and embedded devices that operates under fast duty cycles (e.g., < 30 ms). RLLib has been tested and evaluated on RoboCup 3D soccer simulation agents, physical NAO V4 humanoid robots, and Tiva C series launchpad microcontrollers to predict, control, learn behaviors, and represent learnable knowledge. The implementation of the RLLib library is inspired by the RLPark API, which is a library of temporaldifference learning algorithms written in Java. Changes:Current release version is v2.0.

About: JNCC2 is the opensource implementation of the Naive Credal Classifier2 (NCC2), i.e., an extension of Naive Bayes towards imprecise probabilities, designed to deliver robust classifications even on [...] Changes:Initial Announcement on mloss.org.

About: OpenViBE is an opensource platform that enables to design, test and use BrainComputer Interfaces (BCI). Broadly speaking, OpenViBE can be used in many realtime Neuroscience applications [...] Changes:New release 0.8.0.

About: The Universal Java Matrix Package (UJMP) is a data processing tool for Java. Unlike JAMA and Colt, it supports multithreading and is therefore much faster on current hardware. It does not only support matrices with double values, but instead handles every type of data as a matrix through a common interface, e.g. CSV files, Excel files, images, WAVE audio files, tables in SQL data bases, and much more. Changes:Updated to version 0.3.0

About: Very fast implementation of the chisquared distance between histograms (or vectors with nonnegative entries). Changes:Removed bug in symmetric chisquare distance and updated python wrapper to python 2.5 compatiblity. 
About: Toolbox for circular statistics with Matlab (The Mathworks). Changes:Some bugfixes.
