About: LIBOL is an opensource library with a family of stateoftheart online learning algorithms for machine learning and big data analytics research. The current version supports 16 online algorithms for binary classification and 13 online algorithms for multiclass classification. Changes:In contrast to our last version (V0.2.3), the new version (V0.3.0) has made some important changes as follows: • Add a template and guide for adding new algorithms; • Improve parameter settings and make documentation clear; • Improve documentation on data formats and key functions; • Amend the "OGD" function to use different loss types; • Fixed some name inconsistency and other minor bugs.

About: The SUMO Toolbox is a Matlab toolbox that automatically builds accurate surrogate models (also known as metamodels or response surface models) of a given data source (e.g., simulation code, data set, script, ...) within the accuracy and time constraints set by the user. The toolbox minimizes the number of data points (which it selects automatically) since they are usually expensive. Changes:Incremental update, fixing some cosmetic issues, coincides with JMLR publication.

About: Breiman and Cutler's random forests for classification and regression Changes:Fetched by rcranrobot on 20130401 00:00:07.638240

About: The Maja Machine Learning Framework (MMLF) is a general framework for problems in the domain of Reinforcement Learning (RL) written in python. It provides a set of RL related algorithms and a set of benchmark domains. Furthermore it is easily extensible and allows to automate benchmarking of different agents. Changes:

About: C++ software for statistical classification, probability estimation and interpolation/nonlinear regression using variable bandwidth kernel estimation. Changes:New in Version 0.9.8:

About: Pyriel is a Python system for learning classification rules from data. Unlike other rule learning systems, it is designed to learn rule lists that maximize the area under the ROC curve (AUC) instead of accuracy. Pyriel is mostly an experimental research tool, but it's robust and fast enough to be used for lightweight industrial data mining. Changes:1.5 Changed CF (confidence factor) to do LaPlace smoothing of estimates. New flag "scoreforclass C" causes scores to be computed relative to a given (positive) class. For twoclass problems. Fixed bug in example sampling code (sample n) Fixed bug keeping oldstyle example formats (terminated by dot) from working. More code restructuring.

About: This package contains a python and a matlab implementation of the most widely used algorithms for multiarmed bandit problems. The purpose of this package is to provide simple environments for comparison and numerical evaluation of policies. Changes:Initial Announcement on mloss.org.

About: jblas is a fast linear algebra library for Java. jblas is based on BLAS and LAPACK, the defacto industry standard for matrix computations, and uses stateoftheart implementations like ATLAS for all its computational routines, making jBLAS very fast. Changes:Changes from 1.0:

About: Bayesian treed Gaussian process models Changes:Fetched by rcranrobot on 20120201 00:00:11.834310

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems Changes:
