About: JProGraM (PRObabilistic GRAphical Models in Java) is a statistical machine learning library. It supports statistical modeling and data analysis along three main directions: (1) probabilistic graphical models (Bayesian networks, Markov random fields, dependency networks, hybrid random fields); (2) parametric, semiparametric, and nonparametric density estimation (Gaussian models, nonparanormal estimators, Parzen windows, NadarayaWatson estimator); (3) generative models for random networks (smallworld, scalefree, exponential random graphs, Fiedler random graphs/fields), subgraph sampling algorithms (random walk, snowball, etc.), and spectral decomposition. Changes:JProGraM 13.2  CHANGE LOG Release date: February 13, 2012 New features:  Support for Fiedler random graphs/random field models for largescale networks (ninofreno.graph.fiedler package);  Various bugfixes and enhancements (especially in the ninofreno.graph and ninofreno.math package).

About: Model Monitor is a Java toolkit for the systematic evaluation of classifiers under changes in distribution. It provides methods for detecting distribution shifts in data, comparing the performance [...] Changes:Improved AUROC calculation. Several minor bug fixes.

About: Bayesian treed Gaussian process models Changes:Fetched by rcranrobot on 20120201 00:00:11.834310

About: Pyriel is a Python system for learning classification rules from data. Unlike other rule learning systems, it is designed to learn rule lists that maximize the area under the ROC curve (AUC) instead of accuracy. Pyriel is mostly an experimental research tool, but it's robust and fast enough to be used for lightweight industrial data mining. Changes:1.5 Changed CF (confidence factor) to do LaPlace smoothing of estimates. New flag "scoreforclass C" causes scores to be computed relative to a given (positive) class. For twoclass problems. Fixed bug in example sampling code (sample n) Fixed bug keeping oldstyle example formats (terminated by dot) from working. More code restructuring.

About: Somoclu is a massively parallel implementation of selforganizing maps. It relies on OpenMP for multicore execution, MPI for distributing the workload, and it can be accelerated by CUDA on a GPU cluster. A sparse kernel is also included, which is useful for training maps on vector spaces generated in text mining processes. Apart from a command line interface, Python, R, and MATLAB are supported. Changes:

About: LIBOL is an opensource library with a family of stateoftheart online learning algorithms for machine learning and big data analytics research. The current version supports 16 online algorithms for binary classification and 13 online algorithms for multiclass classification. Changes:In contrast to our last version (V0.2.3), the new version (V0.3.0) has made some important changes as follows: • Add a template and guide for adding new algorithms; • Improve parameter settings and make documentation clear; • Improve documentation on data formats and key functions; • Amend the "OGD" function to use different loss types; • Fixed some name inconsistency and other minor bugs.

About: JNCC2 is the opensource implementation of the Naive Credal Classifier2 (NCC2), i.e., an extension of Naive Bayes towards imprecise probabilities, designed to deliver robust classifications even on [...] Changes:Initial Announcement on mloss.org.

About: C++ software for statistical classification, probability estimation and interpolation/nonlinear regression using variable bandwidth kernel estimation. Changes:New in Version 0.9.8:

About: OpenViBE is an opensource platform that enables to design, test and use BrainComputer Interfaces (BCI). Broadly speaking, OpenViBE can be used in many realtime Neuroscience applications [...] Changes:New release 0.8.0.

About: Toolbox for circular statistics with Matlab (The Mathworks). Changes:Some bugfixes.
