About: Breiman and Cutler's random forests for classification and regression Changes:Fetched by rcranrobot on 20130401 00:00:07.638240

About: JProGraM (PRObabilistic GRAphical Models in Java) is a statistical machine learning library. It supports statistical modeling and data analysis along three main directions: (1) probabilistic graphical models (Bayesian networks, Markov random fields, dependency networks, hybrid random fields); (2) parametric, semiparametric, and nonparametric density estimation (Gaussian models, nonparanormal estimators, Parzen windows, NadarayaWatson estimator); (3) generative models for random networks (smallworld, scalefree, exponential random graphs, Fiedler random graphs/fields), subgraph sampling algorithms (random walk, snowball, etc.), and spectral decomposition. Changes:JProGraM 13.2  CHANGE LOG Release date: February 13, 2012 New features:  Support for Fiedler random graphs/random field models for largescale networks (ninofreno.graph.fiedler package);  Various bugfixes and enhancements (especially in the ninofreno.graph and ninofreno.math package).

About: Pyriel is a Python system for learning classification rules from data. Unlike other rule learning systems, it is designed to learn rule lists that maximize the area under the ROC curve (AUC) instead of accuracy. Pyriel is mostly an experimental research tool, but it's robust and fast enough to be used for lightweight industrial data mining. Changes:1.5 Changed CF (confidence factor) to do LaPlace smoothing of estimates. New flag "scoreforclass C" causes scores to be computed relative to a given (positive) class. For twoclass problems. Fixed bug in example sampling code (sample n) Fixed bug keeping oldstyle example formats (terminated by dot) from working. More code restructuring.

About: Bayesian treed Gaussian process models Changes:Fetched by rcranrobot on 20120201 00:00:11.834310

About: LIBOL is an opensource library with a family of stateoftheart online learning algorithms for machine learning and big data analytics research. The current version supports 16 online algorithms for binary classification and 13 online algorithms for multiclass classification. Changes:In contrast to our last version (V0.2.3), the new version (V0.3.0) has made some important changes as follows: • Add a template and guide for adding new algorithms; • Improve parameter settings and make documentation clear; • Improve documentation on data formats and key functions; • Amend the "OGD" function to use different loss types; • Fixed some name inconsistency and other minor bugs.

About: Model Monitor is a Java toolkit for the systematic evaluation of classifiers under changes in distribution. It provides methods for detecting distribution shifts in data, comparing the performance [...] Changes:Improved AUROC calculation. Several minor bug fixes.

About: C++ software for statistical classification, probability estimation and interpolation/nonlinear regression using variable bandwidth kernel estimation. Changes:New in Version 0.9.8:

About: JNCC2 is the opensource implementation of the Naive Credal Classifier2 (NCC2), i.e., an extension of Naive Bayes towards imprecise probabilities, designed to deliver robust classifications even on [...] Changes:Initial Announcement on mloss.org.

About: Variational Bayesian inference tools for Python Changes:

About: FABIA is a biclustering algorithm that clusters rows and columns of a matrix simultaneously. Consequently, members of a row cluster are similar to each other on a subset of columns and, analogously, members of a column cluster are similar to each other on a subset of rows. Biclusters are found by factor analysis where both the factors and the loading matrix are sparse. FABIA is a multiplicative model that extracts linear dependencies between samples and feature patterns. Applications include detection of transcriptional modules in gene expression data and identification of haplotypes/>identity by descent< consisting of rare variants obtained by next generation sequencing. Changes:CHANGES IN VERSION 2.8.0NEW FEATURES
CHANGES IN VERSION 2.4.0
CHANGES IN VERSION 2.3.1NEW FEATURES
2.0.0:
1.4.0:
