All entries.
Showing Items 1-10 of 631 on page 1 of 64: 1 2 3 4 5 6 Next Last

Logo JMLR dlib ml 19.2

by davis685 - October 11, 2016, 01:54:09 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 167748 views, 26744 downloads, 5 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release adds a number of new features, most important of which is a deep convolutional neural network version of the max-margin object detection algorithm. This tool makes it very easy to create high quality object detectors. See http://dlib.net/dnn_mmod_ex.cpp.html for an introduction.


Logo JMLR Information Theoretical Estimators 0.63

by szzoli - June 9, 2016, 23:42:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 121916 views, 22430 downloads, 3 subscriptions

About: ITE (Information Theoretical Estimators) is capable of estimating many different variants of entropy, mutual information, divergence, association measures, cross quantities and kernels on distributions. Thanks to its highly modular design, ITE supports additionally (i) the combinations of the estimation techniques, (ii) the easy construction and embedding of novel information theoretical estimators, and (iii) their immediate application in information theoretical optimization problems.

Changes:
  • Conditional Shannon entropy estimation: added.

  • Conditional Shannon mutual information estimation: included.


Logo JMLR SHOGUN 4.0.0

by sonne - February 5, 2015, 09:09:37 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 120730 views, 17092 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.

Changes:

This release features the work of our 8 GSoC 2014 students [student; mentors]:

  • OpenCV Integration and Computer Vision Applications [Abhijeet Kislay; Kevin Hughes]
  • Large-Scale Multi-Label Classification [Abinash Panda; Thoralf Klein]
  • Large-scale structured prediction with approximate inference [Jiaolong Xu; Shell Hu]
  • Essential Deep Learning Modules [Khaled Nasr; Sergey Lisitsyn, Theofanis Karaletsos]
  • Fundamental Machine Learning: decision trees, kernel density estimation [Parijat Mazumdar ; Fernando Iglesias]
  • Shogun Missionary & Shogun in Education [Saurabh Mahindre; Heiko Strathmann]
  • Testing and Measuring Variable Interactions With Kernels [Soumyajit De; Dino Sejdinovic, Heiko Strathmann]
  • Variational Learning for Gaussian Processes [Wu Lin; Heiko Strathmann, Emtiyaz Khan]

It also contains several cleanups and bugfixes:

Features

  • New Shogun project description [Heiko Strathmann]
  • ID3 algorithm for decision tree learning [Parijat Mazumdar]
  • New modes for PCA matrix factorizations: SVD & EVD, in-place or reallocating [Parijat Mazumdar]
  • Add Neural Networks with linear, logistic and softmax neurons [Khaled Nasr]
  • Add kernel multiclass strategy examples in multiclass notebook [Saurabh Mahindre]
  • Add decision trees notebook containing examples for ID3 algorithm [Parijat Mazumdar]
  • Add sudoku recognizer ipython notebook [Alejandro Hernandez]
  • Add in-place subsets on features, labels, and custom kernels [Heiko Strathmann]
  • Add Principal Component Analysis notebook [Abhijeet Kislay]
  • Add Multiple Kernel Learning notebook [Saurabh Mahindre]
  • Add Multi-Label classes to enable Multi-Label classification [Thoralf Klein]
  • Add rectified linear neurons, dropout and max-norm regularization to neural networks [Khaled Nasr]
  • Add C4.5 algorithm for multiclass classification using decision trees [Parijat Mazumdar]
  • Add support for arbitrary acyclic graph-structured neural networks [Khaled Nasr]
  • Add CART algorithm for classification and regression using decision trees [Parijat Mazumdar]
  • Add CHAID algorithm for multiclass classification and regression using decision trees [Parijat Mazumdar]
  • Add Convolutional Neural Networks [Khaled Nasr]
  • Add Random Forests algorithm for ensemble learning using CART [Parijat Mazumdar]
  • Add Restricted Botlzmann Machines [Khaled Nasr]
  • Add Stochastic Gradient Boosting algorithm for ensemble learning [Parijat Mazumdar]
  • Add Deep contractive and denoising autoencoders [Khaled Nasr]
  • Add Deep belief networks [Khaled Nasr]

Bugfixes

  • Fix reference counting bugs in CList when reference counting is on [Heiko Strathmann, Thoralf Klein, lambday]
  • Fix memory problem in PCA::apply_to_feature_matrix [Parijat Mazumdar]
  • Fix crash in LeastAngleRegression for the case D greater than N [Parijat Mazumdar]
  • Fix memory violations in bundle method solvers [Thoralf Klein]
  • Fix fail in library_mldatahdf5.cpp example when http://mldata.org is not working properly [Parijat Mazumdar]
  • Fix memory leaks in Vowpal Wabbit, LibSVMFile and KernelPCA [Thoralf Klein]
  • Fix memory and control flow issues discovered by Coverity [Thoralf Klein]
  • Fix R modular interface SWIG typemap (Requires SWIG >= 2.0.5) [Matt Huska]

Cleanup and API Changes

  • PCA now depends on Eigen3 instead of LAPACK [Parijat Mazumdar]
  • Removing redundant and fixing implicit imports [Thoralf Klein]
  • Hide many methods from SWIG, reducing compile memory by 500MiB [Heiko Strathmann, Fernando Iglesias, Thoralf Klein]

Logo r-cran-caret 6.0-73

by r-cran-robot - November 8, 2016, 00:00:00 CET [ Project Homepage BibTeX Download ] 113043 views, 21581 downloads, 3 subscriptions

About: Classification and Regression Training

Changes:

Fetched by r-cran-robot on 2017-01-01 00:00:03.899431


Logo Armadillo library 7.200

by cu24gjf - July 10, 2016, 15:44:07 CET [ Project Homepage BibTeX Download ] 99419 views, 19599 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 3 votes)

About: Armadillo is a high quality C++ linear algebra library, aiming towards a good balance between speed and ease of use. The function syntax is deliberately similar to MATLAB. Useful for algorithm development directly in C++, or quick conversion of research code into production environments (eg. software & hardware products).

Changes:
  • eigs_sym(), eigs_gen() and svds() now use a built-in reimplementation of ARPACK; contributed by Yixuan Qiu
  • faster handling of compound expressions by vectorise()
  • added .index_min() and .index_max()
  • added erf(), erfc(), lgamma()
  • added .head_slices() and .tail_slices() to subcube views
  • expanded ind2sub() to handle vectors of indices
  • expanded sub2ind() to handle matrix of subscripts
  • expanded expmat(), logmat() and sqrtmat() to optionally return a bool indicating success
  • spsolve() now requires SuperLU 5.2

Logo MyMediaLite 3.10

by zenog - October 8, 2013, 22:29:29 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 78466 views, 14010 downloads, 1 subscription

About: MyMediaLite is a lightweight, multi-purpose library of recommender system algorithms.

Changes:

Mostly bug fixes.

For details see: https://github.com/zenogantner/MyMediaLite/blob/master/doc/Changes


Logo MLPY Machine Learning Py 3.5.0

by albanese - March 15, 2012, 09:52:41 CET [ Project Homepage BibTeX Download ] 76868 views, 13986 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 3 votes)

About: mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL.

Changes:

New features:

  • LibSvm(): pred_probability() now returns probability estimates; pred_values() added
  • LibLinear(): pred_values() and pred_probability() added
  • dtw_std: squared Euclidean option added
  • LCS for series composed by real values (lcs_real()) added
  • Documentation

Fix:

  • wavelet submodule: cwt(): it returned only real values in morlet and poul
  • IRelief(): remove np. in learn()
  • fix rfe_kfda and rfe_w2 when p=1

Logo JMLR MLPACK 2.1.1

by rcurtin - December 22, 2016, 20:01:29 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 72474 views, 12815 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A scalable, fast C++ machine learning library, with emphasis on usability.

Changes:

Released Dec. 22nd, 2016.

  • HMMs now use random initialization; this should fix some convergence issues (#828).
  • HMMs now initialize emissions according to the distribution of observations (#833).
  • Minor fix for formatted output (#814).
  • Fix DecisionStump to properly work with any input type.

Logo OpenOpt 0.54

by Dmitrey - June 15, 2014, 14:50:37 CET [ Project Homepage BibTeX Download ] 69819 views, 14330 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Universal Python-written numerical optimization toolbox. Problems: NLP, LP, QP, NSP, MILP, LSP, LLSP, MMP, GLP, SLE, MOP etc; general logical constraints, categorical variables, automatic differentiation, stochastic programming, interval analysis, many other goodies

Changes:

http://openopt.org/Changelog


Logo WEKA 3.9.1

by mhall - December 19, 2016, 04:44:20 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 66405 views, 10011 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

In core weka:

  • JAMA-based linear algebra routines replaced with MTJ. Faster operation with the option to use native libraries for even more speed
  • General efficiency improvements in core, filters and some classifiers
  • GaussianProcesses now handles instance weights
  • New Knowledge Flow implementation. Engine completely rewritten from scratch with a simplified API
  • New Workbench GUI
  • GUI package manager now has a search facility
  • FixedDictionaryStringToWordVector filter allows the use of an external dictionary for vectorization. DictionarySaver converter can be used to create a dictionary file

In packages:

  • Packages that were using JAMA are now using MTJ
  • New netlibNativeOSX, netlibNativeWindows and netlibNativeLinux packages providing native reference implementations (and system-optimized implementation in the case of OSX) of BLAS, LAPACK and ARPACK linear algebra
  • New elasticNet package, courtesy of Nikhil Kinshore
  • New niftiLoader package for loading a directory with MIR data in NIfTI format into Weka
  • New percentageErrorMetrics package - provides plugin evaluation metrics for root mean square percentage error and mean absolute percentage error
  • New iterativeAbsoluteErrorRegression package - provides a meta learner that fits a regression model to minimize absolute error
  • New largeScaleKernelLearning package - contains filters for large-scale kernel-based learning
  • discriminantAnalysis package now contains an implementation for LDA and QDA
  • New Knowledge Flow component implementations in various packages
  • newKnowledgeFlowStepExamples package - contains code examples for new Knowledge Flow API discussion in the Weka Manual
  • RPlugin updated to latest version of MLR
  • scatterPlot3D and associationRulesVisualizer packages updated with latest Java 3D libraries
  • Support for pluggable activation functions in the multiLayerPerceptrons package

Showing Items 1-10 of 631 on page 1 of 64: 1 2 3 4 5 6 Next Last