Project details for Nilearn

Logo Nilearn 0.1.2

by goulagman - April 29, 2015, 16:16:25 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ]

view (1 today), download ( 0 today ), 3 subscriptions

Description:

Neuroimaging datasets are constantly growing in resolution, sample size, and complexity. This entails an always bigger interest in data-driven statistical analysis methods. Nilearn is a new scientific computing package that has been designed to address these challenges in contemporary data analysis in imaging neuroscience. It facilitates data pre-processing (i.e., "feature engineering"), state-of-the-art statistical learning algorithms (i.e., learning patterns from data), and visualization of various types of neuroimaging results (i.e., experimental fMRI, VBM, and resting-state correlations).

Novice and expert users can, for instance, readily compute brain parcellations and extract signals from those. Brain signals could then be fed into sparse inverse covariance estimation to compute "functional connectomes". More generally, Nilearn can leverage a diverse set of unsupervised and supervised data analysis scenarios by integration with a well-mainted and growing general-purpose machine-learning library (i.e., scikit-learn).

The successful extraction of structured knowledge/insight from current and future large-scale neuroimaging datasets will be a critical prerequisite for our understanding of human brain architecture in healthy populations and psychiatric/neurological disease. It is in this aim that Nilearn is conceived and developed. Given hosting on the coding plattform Github, Nilearn further encourages inter-laboratory collaboration towards software quality and data-analysis standards for the scientific community.

Changes to previous version:

Initial Announcement on mloss.org.

BibTeX Entry: Download
Corresponding Paper BibTeX Entry: Download
URL: Project Homepage
Supported Operating Systems: Agnostic
Data Formats: Nifti, Any Format Supported By Nibabel
Tags: Python, Machine Learning, Statistical Learning, Neuroimaging, Scikit Learn
Archive: download here

Comments

No one has posted any comments yet. Perhaps you'd like to be the first?

Leave a comment

You must be logged in to post comments.