hn has posted 4 projects.


Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 3.6

by hn - July 6, 2015, 12:31:28 CET [ Project Homepage BibTeX Download ] 25968 views, 6026 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave 3.2.x and Matlab 7.x implementation of inference and prediction in Gaussian Process (GP) models.

Changes:
  • added a new inference function infGrid_Laplace allowing to use non-Gaussian likelihoods for large grids

  • fixed a bug due to Octave evaluating norm([]) to a tiny nonzero value, modified all lik/lik*.m functions reported by Philipp Richter

  • small bugfixes in covGrid and infGrid

  • bugfix in predictive variance of likNegBinom due to Seth Flaxman

  • bugfix in infFITC_Laplace as suggested by Wu Lin

  • bugfix in covPP{iso,ard}


About: The glm-ie toolbox contains scalable estimation routines for GLMs (generalised linear models) and SLMs (sparse linear models) as well as an implementation of a scalable convex variational Bayesian inference relaxation. We designed the glm-ie package to be simple, generic and easily expansible. Most of the code is written in Matlab including some MEX files. The code is fully compatible to both Matlab 7.x and GNU Octave 3.2.x. Probabilistic classification, sparse linear modelling and logistic regression are covered in a common algorithmical framework allowing for both MAP estimation and approximate Bayesian inference.

Changes:

added factorial mean field inference as a third algorithm complementing expectation propagation and variational Bayes

generalised non-Gaussian potentials so that affine instead of linear functions of the latent variables can be used


About: The gmm toolbox contains code for density estimation using mixtures of Gaussians: Starting from simple kernel density estimation with spherical and diagonal Gaussian kernels over manifold Parzen window until mixtures of penalised full Gaussians with only a few components. The toolbox covers many Gaussian mixture model parametrisations from the recent literature. Most prominently, the package contains code to use the Gaussian Process Latent Variable Model for density estimation. Most of the code is written in Matlab 7.x including some MEX files.

Changes:

Initial Announcement on mloss.org


Logo FWTN 1.0

by hn - March 25, 2010, 16:58:24 CET [ Project Homepage BibTeX Download ] 4552 views, 1054 downloads, 1 subscription

About: Orthonormal wavelet transform for D dimensional tensors in L levels. Generic quadrature mirror filters and tensor sizes. Runtime is O(n), plain C, MEX-wrapper and demo provided.

Changes:

Initial Announcement on mloss.org.