Baz has posted 1 project.


Logo Cognitive Foundry 3.4.0

by Baz - April 3, 2015, 08:28:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18481 views, 2992 downloads, 2 subscriptions

About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications.

Changes:
  • General:
    • Now requires Java 1.7 or higher.
    • Improved compatibility with Java 1.8 functions by removing ClonableSerializable requirement from many function-style interfaces.
  • Common Core:
    • Improved iteration speed over sparse MTJ vectors.
    • Added utility methods for more stable log(1+x), exp(1-x), log(1 - exp(x)), and log(1 + exp(x)) to LogMath.
    • Added method for creating a partial permutations to Permutation.
    • Added methods for computing standard deviation to UnivariateStatisticsUtil.
    • Added increment, decrement, and list view methods to Vector and Matrix.
    • Added shorter versions of get and set for Vector and Matrix getElement and setElement.
    • Added aliases of dot for dotProduct in VectorSpace.
    • Added utility methods for divideByNorm2 to VectorUtil.
  • Learning:
    • Added a learner for a Factorization Machine using SGD.
    • Added a iterative reporter for validation set performance.
    • Added new methods to statistical distribution classes to allow for faster sampling without boxing, in batches, or without creating extra memory.
    • Made generics for performance evaluators more permissive.
    • ParameterGradientEvaluator changed to not require input, output, and gradient types to be the same. This allows more sane gradient definitions for scalar functions.
    • Added parameter to enforce a minimum size in a leaf node for decision tree learning. It is configured through the splitting function.
    • Added ability to filter which dimensions to use in the random subspace and variance tree node splitter.
    • Added ReLU, leaky ReLU, and soft plus activation functions for neural networks.
    • Added IntegerDistribution interface for distributions over natural numbers.
    • Added a method to get the mean of a numeric distribution without boxing.
    • Fixed an issue in DefaultDataDistribution that caused the total to be off when a value was set to less than or equal to 0.
    • Added property for rate to GammaDistribution.
    • Added method to get standard deviation from a UnivariateGaussian.
    • Added clone operations for decision tree classes.
    • Fixed issue TukeyKramerConfidence interval computation.
    • Fixed serialization issue with SMO output.