Projects that are tagged with visualization.

Logo ELKI 0.7.0

by erich - November 27, 2015, 18:23:16 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 15665 views, 2853 downloads, 4 subscriptions

About: ELKI is a framework for implementing data-mining algorithms with support for index structures, that includes a wide variety of clustering and outlier detection methods.


Additions and Improvements from ELKI 0.6.0:

ELKI is now available on Maven:|de.lmu.ifi.dbs.elki|elki|0.7.0|jar

Please clone for a minimal project example.

Uncertain data types, and clustering algorithms for uncertain data.

Major refactoring of distances - removal of Distance values and removed support for non-double-valued distance functions (in particular DoubleDistance was removed). While this reduces the generality of ELKI, we could remove about 2.5% of the codebase by not having to have optimized codepaths for double-distance anymore. Generics for distances were present in almost any distance-based algorithm, and we were also happy to reduce the use of generics this way. Support for non-double-valued distances can trivially be added again, e.g. by adding the specialization one level higher: at the query instead of the distance level, for example. In this process, we also removed the Generics from NumberVector. The object-based get was deprecated for a good reason long ago, and e.g. doubleValue are more efficient (even for non-DoubleVectors).

Dropped some long-deprecated classes.


  • speedups for some initialization heuristics.

  • K-means++ initialization no longer squares distances (again).

  • farthest-point heuristics now uses minimum instead of sum (renamed).

  • additional evaluation criteria.

  • Elkan's and Hamerly's faster k-means variants.

CLARA clustering.


Hierarchical clustering:

  • Renamed naive algorithm to AGNES.

  • Anderbergs algorithm (faster than AGNES, slower than SLINK).

  • CLINK for complete linkage clustering in O(n²) time, O(n) memory.

  • Simple extraction from HDBSCAN.

  • "Optimal" extraction from HDBSCAN.

  • HDBSCAN, in two variants.

LSDBC clustering.

EM clustering was refactored and moved into its own package. The new version is much more extensible.

OPTICS clustering:

  • Added a list-based variant of OPTICS to our heap-based.

  • FastOPTICS (contributed by Johannes Schneider).

  • Improved OPTICS Xi cluster extraction.

Outlier detection:

  • KDEOS outlier detection (SDM14).

  • k-means based outlier detection (distance to centroid) and Silhouette coefficient based approach (which does not work too well on the toy data sets - the lowest silhouette are usually where two clusters touch).

  • bug fix in kNN weight, when distances are tied and kNN yields more than k results.

  • kNN and kNN weight outlier have their k parameter changed: old 2NN outlier is now 1NN outlier, as commonly understood in classification literature (1 nearest neighbor other than the query object; whereas in database literature the 1NN is usually the query object itself). You can get the old result back by decreasing k by one easily.

  • LOCI implementation is now only O(n^3 log n) instead of O(n^4).

  • Local Isolation Coefficient (LIC).

  • IDOS outlier detection with intrinsic dimensionality.

  • Baseline intrinsic dimensionality outlier detection.

  • Variance-of-Volumes outlier detection (VOV).

Parallel computation framework, and some parallelized algorithms

  • Parallel k-means.

  • Parallel LOF and variants.

LibSVM format parser.

kNN classification (with index acceleration).

Internal cluster evaluation:

  • Silhouette index.

  • Simplified Silhouette index (faster).

  • Davis-Bouldin index.

  • PBM index.

  • Variance-Ratio-Criteria.

  • Sum of squared errors.

  • C-Index.

  • Concordant pair indexes (Gamma, Tau).

  • Different noise handling strategies for internal indexes.

Statistical dependence measures:

  • Distance correlation dCor.

  • Hoeffings D.

  • Some divergence / mutual information measures.

Distance functions:

  • Big refactoring.

  • Time series distances refactored, allow variable length series now.

  • Hellinger distance and kernel function.


  • Faster MDS implementation using power iterations.

Indexing improvements:

  • Precomputed distance matrix "index".

  • iDistance index (static only).

  • Inverted-list index for sparse data and cosine/arccosine distance.

  • Cover tree index (static only).

  • Additional LSH hash functions.

Frequent Itemset Mining:

  • Improved APRIORI implementation.

  • FP-Growth added.

  • Eclat (basic version only) added.

Uncertain clustering:

  • Discrete and continuous data models.

  • FDBSCAN clustering.

  • UKMeans clustering.

  • CKMeans clustering.

  • Representative Uncertain Clustering (Meta-algorithm).

  • Center-of-mass meta Clustering (allows using other clustering algorithms on uncertain objects).


  • Several estimators for intrinsic dimensionality.

MiniGUI has two "secret" new options: -minigui.last -minigui.autorun to load the last saved configuration and run it, for convenience.

Logging API has been extended, to make logging more convenient in a number of places (saving some lines for progress logging and timing).

Logo Hub Miner 1.1

by nenadtomasev - January 22, 2015, 16:33:51 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2568 views, 529 downloads, 2 subscriptions

About: Hubness-aware Machine Learning for High-dimensional Data

  • BibTex support for all algorithm implementations, making all of them easy to reference (via algref package).

  • Two more hubness-aware approaches (meta-metric-learning and feature construction)

  • An implementation of Hit-Miss networks for analysis.

  • Several minor bug fixes.

  • The following instance selection methods were added: HMScore, Carving, Iterative Case Filtering, ENRBF.

  • The following clustering quality indexes were added: Folkes-Mallows, Calinski-Harabasz, PBM, G+, Tau, Point-Biserial, Hubert's statistic, McClain-Rao, C-root-k.

  • Some more experimental scripts have been included.

  • Extensions in the estimation of hubness risk.

  • Alias and weighted reservoir methods for weight-proportional random selection.

Logo Differential Dependency Network cabig cytoscape plugin 1.0

by cbil - October 27, 2013, 17:31:58 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2347 views, 564 downloads, 1 subscription

About: DDN learns and visualize differential dependency networks from condition-specific data.


Initial Announcement on

Logo MLDemos 0.5.1

by basilio - March 2, 2013, 16:06:13 CET [ Project Homepage BibTeX Download ] 23735 views, 5440 downloads, 2 subscriptions

About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning.


New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance

New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)

Logo Orange 2.6

by janez - February 14, 2013, 18:15:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14949 views, 2843 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: Orange is a component-based machine learning and data mining software. It includes a friendly yet powerful and flexible graphical user interface for visual programming. For more advanced use(r)s, [...]


The core of the system (except the GUI) no longer includes any GPL code and can be licensed under the terms of BSD upon request. The graphical part remains under GPL.

Changed the BibTeX reference to the paper recently published in JMLR MLOSS.

Logo Divvy 1.1.1

by jlewis - November 14, 2012, 20:21:29 CET [ Project Homepage BibTeX Download ] 2785 views, 1509 downloads, 1 subscription

About: Divvy is a Mac OS X application for performing dimensionality reduction, clustering, and visualization.


Initial Announcement on

Logo MLPlot Beta

by pascal - August 22, 2011, 11:07:53 CET [ Project Homepage BibTeX Download ] 2941 views, 694 downloads, 1 subscription

About: MLPlot is a lightweight plotting library written in Java.


Initial Announcement on

Logo Finding nonlinear and stochastic structures in time series 1

by Dante - October 29, 2008, 11:14:44 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6853 views, 1399 downloads, 2 subscriptions

About: The Delay vector variance (DVV) method uses predictability of the signal in phase space to characterize the time series. Using the surrogate data methodology, so called DVV plots and DVV scatter [...]


Initial Announcement on