Projects that are tagged with tree.


Logo JMLR MLPACK 2.0.1

by rcurtin - March 3, 2016, 18:52:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 58337 views, 10775 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A scalable, fast C++ machine learning library, with emphasis on usability.

Changes:
  • Fix CMake to properly detect when MKL is being used with Armadillo.
  • Minor parameter handling fixes to mlpack_logistic_regression.
  • Properly install arma_config.hpp.
  • Memory handling fixes for Hoeffding tree code.
  • Add functions that allow changing training-time parameters to HoeffdingTree class.
  • Fix infinite loop in sparse coding test.
  • Documentation spelling fixes.
  • Properly handle covariances for Gaussians with large condition number, preventing GMMs from filling with NaNs during training (and also HMMs that use GMMs).
  • CMake fixes for finding LAPACK and BLAS as Armadillo dependencies when ATLAS is used.
  • CMake fix for projects using mlpack's CMake configuration from elsewhere.

Logo XGBoost v0.4.0

by crowwork - May 12, 2015, 08:57:16 CET [ Project Homepage BibTeX Download ] 12940 views, 2417 downloads, 3 subscriptions

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems

Changes:
  • Distributed version of xgboost that runs on YARN, scales to billions of examples

  • Direct save/load data and model from/to S3 and HDFS

  • Feature importance visualization in R module, by Michael Benesty

  • Predict leaf index

  • Poisson regression for counts data

  • Early stopping option in training

  • Native save load support in R and python

  • xgboost models now can be saved using save/load in R

  • xgboost python model is now pickable

  • sklearn wrapper is supported in python module

  • Experimental External memory version