Projects that are tagged with tree.


Logo JMLR MLPACK 2.0.3

by rcurtin - July 22, 2016, 00:39:12 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 61610 views, 11202 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A scalable, fast C++ machine learning library, with emphasis on usability.

Changes:
  • Standardize some parameter names for programs (old names are kept for reverse compatibility, but warnings will now be issued).
  • RectangleTree optimizations (#721).
  • Fix memory leak in NeighborSearch (#731).
  • Documentation fix for k-means tutorial (#730).
  • Fix TreeTraits for BallTree (#727).
  • Fix incorrect parameter checks for some command-line programs.
  • Fix error in HMM training with probabilities for each point (#636).

Logo XGBoost v0.4.0

by crowwork - May 12, 2015, 08:57:16 CET [ Project Homepage BibTeX Download ] 13700 views, 2520 downloads, 3 subscriptions

About: xgboost: eXtreme Gradient Boosting It is an efficient and scalable implementation of gradient boosting framework. The package includes efficient linear model solver and tree learning algorithm. The package can automatically do parallel computation with OpenMP, and it can be more than 10 times faster than existing gradient boosting packages such as gbm or sklearn.GBM . It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that user are also allowed to define there own objectives easily. The newest version of xgboost now supports distributed learning on various platforms such as hadoop, mpi and scales to even larger problems

Changes:
  • Distributed version of xgboost that runs on YARN, scales to billions of examples

  • Direct save/load data and model from/to S3 and HDFS

  • Feature importance visualization in R module, by Michael Benesty

  • Predict leaf index

  • Poisson regression for counts data

  • Early stopping option in training

  • Native save load support in R and python

  • xgboost models now can be saved using save/load in R

  • xgboost python model is now pickable

  • sklearn wrapper is supported in python module

  • Experimental External memory version