Projects that are tagged with support vector machines.


Logo JMLR MSVMpack 1.5

by lauerfab - July 3, 2014, 16:02:49 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 12507 views, 4154 downloads, 2 subscriptions

About: MSVMpack is a Multi-class Support Vector Machine (M-SVM) package. It is dedicated to SVMs which can handle more than two classes without relying on decomposition methods and implements the four M-SVM models from the literature: Weston and Watkins M-SVM, Crammer and Singer M-SVM, Lee, Lin and Wahba M-SVM, and the M-SVM2 of Guermeur and Monfrini.

Changes:
  • Windows binaries are now included (by Emmanuel Didiot)
  • MSVMpack can now be compiled on Windows (by Emmanuel Didiot)
  • Fixed polynomial kernel
  • Minor bug fixes

Logo Gesture Recogition Toolkit 0.1 Revision 289

by ngillian - December 13, 2013, 22:59:53 CET [ Project Homepage BibTeX Download ] 3896 views, 728 downloads, 1 subscription

About: The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, c++ machine learning library that has been specifically designed for real-time gesture recognition. It features a large number of machine-learning algorithms for both classification and regression in addition to a wide range of supporting algorithms for pre-processing, feature extraction and dataset management. The GRT has been designed for real-time gesture recognition, but it can also be applied to more general machine-learning tasks.

Changes:

Added Decision Tree and Random Forests.


Logo MLDemos 0.5.1

by basilio - March 2, 2013, 16:06:13 CET [ Project Homepage BibTeX Download ] 19264 views, 4545 downloads, 2 subscriptions

About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning.

Changes:

New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance

New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)


Logo Linear SVM with general regularization 1.0

by rflamary - October 5, 2012, 15:34:21 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 2587 views, 742 downloads, 1 subscription

About: This package is an implementation of a linear svm solver with a wide class of regularizations on the svm weight vector (l1, l2, mixed norm l1-lq, adaptive lasso). We provide solvers for the classical single task svm problem and for multi-task with joint feature selection or similarity promoting term.

Changes:

Initial Announcement on mloss.org.


Logo Kernel Machine Library 0.2

by pawelm - December 27, 2011, 17:14:01 CET [ Project Homepage BibTeX BibTeX for corresponding Paper ] 3634 views, 143 downloads, 1 subscription

About: The Kernel-Machine Library is a free (released under the LGPL) C++ library to promote the use of and progress of kernel machines.

Changes:

Updated mloss entry (minor fixes).


Logo PyMVPA Multivariate Pattern Analysis in Python 2.0.0

by yarikoptic - December 22, 2011, 01:36:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 30186 views, 5525 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Python module to ease pattern classification analyses of large datasets. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, [...]

Changes:
  • 2.0.0 (Mon, Dec 19 2011)

This release aggregates all the changes occurred between official releases in 0.4 series and various snapshot releases (in 0.5 and 0.6 series). To get better overview of high level changes see :ref:release notes for 0.5 <chap_release_notes_0.5> and :ref:0.6 <chap_release_notes_0.6> as well as summaries of release candidates below

  • Fixes (23 BF commits)

    • significance level in the right tail was fixed to include the value tested -- otherwise resulted in optimistic bias (or absurdly high significance in improbable case if all estimates having the same value)
    • compatible with the upcoming IPython 0.12 and renamed sklearn (Fixes #57)
    • do not double-train slave classifiers while assessing sensitivities (Fixes #53)
  • Enhancements (30 ENH + 3 NF commits)

    • resolving voting ties in kNN based on mean distance, and randomly in SMLR
    • :class:kNN's ca.estimates now contains dictionaries with votes for each class
    • consistent zscoring in :class:Hyperalignment
  • 2.0.0~rc5 (Wed, Oct 19 2011)

  • Major: to allow easy co-existence of stable PyMVPA 0.4.x, 0.6 development mvpa module was renamed into mod:mvpa2.

  • Fixes

    • compatible with the new Shogun 1.x series
    • compatible with the new h5py 2.x series
    • mvpa-prep-fmri -- various compatibility fixes and smoke testing
    • deepcopying :class:SummaryStatistics during add
  • Enhancements

    • tutorial uses :mod:mvpa2.tutorial_suite now
    • better suppression of R warnings when needed
    • internal attributes of many classes were exposed as properties
    • more unification of __repr__ for many classes
  • 0.6.0~rc4 (Wed, Jun 14 2011)

  • Fixes

    • Finished transition to :mod:nibabel conventions in plot_lightbox
    • Addressed :mod:matplotlib.hist API change
    • Various adjustments in the tests batteries (:mod:nibabel 1.1.0 compatibility, etc)
  • New functionality

    • Explicit new argument flatten to from_wizard -- default behavior changed if mapper was provided as well
  • Enhancements

    • Elaborated __str__ and __repr__ for some Classifiers and Measures
  • 0.6.0~rc3 (Thu, Apr 12 2011)

  • Fixes

    • Bugfixes regarding the interaction of FlattenMapper and BoxcarMapper that affected event-related analyses.
    • Splitter now handles attribute value None for splitting properly.
    • GNBSearchlight handling of
      roi_ids.
    • More robust detection of mod:scikits.learn and :mod:nipy externals.
  • New functionality

    • Added a Repeater node to yield a dataset multiple times and
      Sifter node to exclude some datasets. Consequently, the "nosplitting" mode of Splitter got removed at the same time.
    • :file:tools/niils -- little tool to list details (dimensionality, scaling, etc) of the files in nibabel-supported formats.
  • Enhancements

    • Numerous documentation fixes.
    • Various improvements and increased flexibility of null distribution estimation of Measures.
    • All attribute are now reported in sorted order when printing a dataset.
    • fmri_dataset now also stores the input image type.
    • Crossvalidation can now take a custom Splitter instance. Moreover, the default splitter of CrossValidation is more robust in terms of number and type of created splits for common usage patterns (i.e. together with partitioners).
    • CrossValidation takes any custom Node as errorfx argument.
    • ConfusionMatrix can now be used as an errorfx in Crossvalidation.
    • LOE(ACC): Linear Order Effect in ACC was added to
      ConfusionMatrix to detect trends in performances across splits.
    • A Node s postproc is now accessible as a property.
    • RepeatedMeasure has a new 'concat_as' argument that allows results to be concatenated along the feature axis. The default behavior, stacking as multiple samples, is unchanged.
    • Searchlight now has the ability to mark the center/seed of an ROI in with a feature attribute in the generated datasets.
    • debug takes args parameter for delayed string comprehensions. It should reduce run-time impact of debug() calls in regular, non -O mode of Python operation.
    • String summaries and representations (provided by __str__ and __repr__) were made more exhaustive and more coherent. Additional properties to access initial constructor arguments were added to variety of classes.
  • Internal changes

    • New debug target STDOUT to allow attaching metrics (e.g. traceback, timestamps) to regular output printed to stdout

    • New set of decorators to help with unittests

    • @nodebug to disable specific debug targets for the duration of the test.

    • @reseed_rng to guarantee consistent random data given initial seeding.

    • @with_tempfile to provide a tempfile name which would get removed upon completion (test success or failure)

    • Dropping daily testing of maint/0.5 branch -- RIP.

    • Collection s were provided with adequate (deep|)copy. And Dataset was refactored to use Collection s copy method.

    • update-* Makefile rules automatically should fast-forward corresponding website-updates branch

    • MVPA_TESTS_VERBOSITY controls also :mod:numpy warnings now.

    • Dataset.__array__ provides original array instead of copy (unless dtype is provided)

Also adapts changes from 0.4.6 and 0.4.7 (see corresponding changelogs).

  • 0.6.0~rc2 (Thu, Mar 3 2011)

  • Various fixes in the mvpa.atlas module.

  • 0.6.0~rc1 (Thu, Feb 24 2011)

  • Many, many, many

  • For an overview of the most drastic changes :ref:see constantly evolving release notes for 0.6 <chap_release_notes_0.6>

  • 0.5.0 (sometime in March 2010)

This is a special release, because it has never seen the general public. A summary of fundamental changes introduced in this development version can be seen in the :ref:release notes <chap_release_notes_0.5>.

Most notably, this version was to first to come with a comprehensive two-day workshop/tutorial.

  • 0.4.7 (Tue, Mar 07 2011) (Total: 12 commits)

A bugfix release

  • Fixed

    • Addressed the issue with input NIfTI files having scl_ fields set: it could result in incorrect analyses and map2nifti-produced NIfTI files. Now input files account for scaling/offset if scl_ fields direct to do so. Moreover upon map2nifti, those fields get reset.
    • :file:doc/examples/searchlight_minimal.py - best error is the minimal one
  • Enhancements

    • :class:~mvpa.clfs.gnb.GNB can now tolerate training datasets with a single label
    • :class:~mvpa.clfs.meta.TreeClassifier can have trailing nodes with no classifier assigned
  • 0.4.6 (Tue, Feb 01 2011) (Total: 20 commits)

A bugfix release

  • Fixed (few BF commits):

    • Compatibility with numpy 1.5.1 (histogram) and scipy 0.8.0 (workaround for a regression in legendre)
    • Compatibility with libsvm 3.0
    • :class:~mvpa.clfs.plr.PLR robustification
  • Enhancements

    • Enforce suppression of numpy warnings while running unittests. Also setting verbosity >= 3 enables all warnings (Python, NumPy, and PyMVPA)
    • :file:doc/examples/nested_cv.py example (adopted from 0.5)
    • Introduced base class :class:~mvpa.clfs.base.LearnerError for classifiers' exceptions (adopted from 0.5)
    • Adjusted example data to live upto nibabel's warranty of NIfTI standard-compliance
    • More robust operation of MC iterations -- skip iterations where classifier experienced difficulties and raise an exception (e.g. due to degenerate data)

Logo LIBOCAS 0.93

by vf - June 20, 2010, 12:22:05 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 9705 views, 1451 downloads, 2 subscriptions

About: The library implements Optimized Cutting Plane Algorithm (OCAS) for efficient training of linear SVM classifiers from large-scale data.

Changes:

Implemented COFFIN framework which allows efficient training of invariant image classifiers via virtual examples.


Logo Stabilized Infinite Kernel Learning 1.0.0

by ghiasi - April 10, 2010, 08:45:03 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4343 views, 765 downloads, 1 subscription

About: This software is designed for learning translation invariant kernels for classification with support vector machines.

Changes:

Initial Announcement on mloss.org.


Logo LIBSVM 2.9

by cjlin - February 27, 2010, 01:09:23 CET [ Project Homepage BibTeX Download ] 10801 views, 2208 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 7 votes)

About: LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC ), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class [...]

Changes:

Initial Announcement on mloss.org.


Logo JMLR Shark 2.3.0

by igel - October 24, 2009, 22:12:48 CET [ Project Homepage BibTeX Download ] 26336 views, 5329 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 3 votes)

About: SHARK is a modular C++ library for the design and optimization of adaptive systems. It provides various machine learning and computational intelligence techniques.

Changes:
  • new build system
  • minor bug fixes

Logo LibSGDQN 1.1

by antojne - July 2, 2009, 15:02:44 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 6815 views, 1357 downloads, 1 subscription

About: LibSGDQN proposes an implementation of SGD-QN, a carefully designed quasi-Newton stochastic gradient descent solver for linear SVMs.

Changes:

small bug fix (thx nicolas ;)


Logo Easysvm 0.3

by gxr - June 25, 2009, 18:33:04 CET [ Project Homepage BibTeX Download ] 8254 views, 1580 downloads, 1 subscription

About: The Easysvm package provides a set of tools based on the Shogun toolbox allowing to train and test SVMs in a simple way.

Changes:

Fixes for shogun 0.7.3.


Logo JMLR LIBLINEAR 1.32

by biconnect - September 3, 2008, 17:35:24 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 17056 views, 1935 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: LIBLINEAR is a linear classifier for data with millions of instances and features. It supports L2-regularized logistic regression (LR), L2-loss linear SVM, L1-loss linear SVM, and multi-class SVM

Changes:

Initial Announcement on mloss.org.


Logo LaRank 1.1

by antojne - July 15, 2008, 15:58:25 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7157 views, 1359 downloads, 1 subscription

About: LaRank is an online solver for multiclass Support Vector Machines.

Changes:

Initial Announcement on mloss.org.


Logo SVM and Kernel Methods Toolbox 0.5

by arakotom - June 10, 2008, 21:29:39 CET [ Project Homepage BibTeX Download ] 9489 views, 2224 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 1 vote)

About: SVM Toolbox fully written in Matlab (even the QP solver). Features : SVM, MultiClassSVM, One-Class, SV Regression, AUC-SVM and Rankboost, 1-norm SVM, Regularization Networks, Kernel Basis Pursuit [...]

Changes:

Initial Announcement on mloss.org.


Logo PyML a python machine learning library focused on kernel methods 0.7.0

by asa - May 29, 2008, 22:23:39 CET [ Project Homepage BibTeX Download ] 8697 views, 2213 downloads, 0 comments, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: PyML is an interactive object oriented framework for machine learning in python with a focus on kernel methods.

Changes:

Initial Announcement on mloss.org.


Logo BSVM 2.06

by biconnect - January 30, 2008, 10:27:13 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7551 views, 1425 downloads, 1 subscription

About: BSVM solves support vector machines (SVM) for the solution of large classification and regression problems. It includes three methods

Changes:

Initial Announcement on mloss.org.


Logo GPDT Gradient Projection Decomposition Technique 1.01

by sezaza - December 21, 2007, 20:10:43 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 8405 views, 1514 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: This is a C++ software designed to train large-scale SVMs for binary classification. The algorithm is also implemented in parallel (**PGPDT**) for distributed memory, strictly coupled multiprocessor [...]

Changes:

Initial Announcement on mloss.org.


Logo Primal training Support Vector Machines 1.0

by chap - November 19, 2007, 17:41:14 CET [ Project Homepage BibTeX Download ] 5156 views, 1128 downloads, 0 comments, 0 subscriptions

About: Very simple code for training SVMs in the primal. Works particularly well on sparse linear problems. In the non-linear case the entire kernel matrix needs to be computed, so for large problems it is [...]

Changes:

Initial Announcement on mloss.org.


Logo Spider 1.71

by jaseweston - November 19, 2007, 15:51:59 CET [ Project Homepage BibTeX Download ] 5583 views, 1687 downloads, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: The spider is intended to be a complete object orientated environment for machine learning in Matlab. Aside from easy use of base learning algorithms, algorithms can be plugged together and can be [...]

Changes:

Initial Announcement on mloss.org.