Projects that are tagged with stochastic neighbor embedding.


About: Stochastic neighbor embedding originally aims at the reconstruction of given distance relations in a low-dimensional Euclidean space. This can be regarded as general approach to multi-dimensional scaling, but the reconstruction is based on the definition of input (and output) neighborhood probability alone. The present implementation also allows for handling dissimilarity or score-induced neighborhood topologies and makes use of quasi 2nd order gradient-based (l-)BFGS optimization.

Changes:
  • gradient in xsne_fun.m fixed! (constant factor m was missing)

  • symmetry option re-introduced allowing for enabling symmetric and asymmetric versions of SNE and t-SNE