Projects that are tagged with scalable.


Logo JMLR MLPACK 3.0.0

by rcurtin - March 31, 2018, 05:31:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 103959 views, 18655 downloads, 6 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: A fast, flexible C++ machine learning library, with bindings to other languages.

Changes:

Released March 30th, 2018.

  • Speed and memory improvements for DBSCAN. --single_mode can now be used for situations where previously RAM usage was too high.
  • Bump minimum required version of Armadillo to 6.500.0.
  • Add automatically generated Python bindings. These have the same interface as the command-line programs.
  • Add deep learning infrastructure in src/mlpack/methods/ann/.
  • Add reinforcement learning infrastructure in src/mlpack/methods/reinforcement_learning/.
  • Add optimizers: AdaGrad, CMAES, CNE, FrankeWolfe, GradientDescent, GridSearch, IQN, Katyusha, LineSearch, ParallelSGD, SARAH, SCD, SGDR, SMORMS3, SPALeRA, SVRG.
  • Add hyperparameter tuning infrastructure and cross-validation infrastructure in src/mlpack/core/cv/ and src/mlpack/core/hpt/.
  • Fix bug in mean shift.
  • Add random forests (see src/mlpack/methods/random_forest).
  • Numerous other bugfixes and testing improvements.
  • Add randomized Krylov SVD and Block Krylov SVD.

Logo RLPy 1.3a

by bobklein2 - August 28, 2014, 14:34:35 CET [ Project Homepage BibTeX Download ] 8114 views, 1683 downloads, 1 subscription

About: RLPy is a framework for performing reinforcement learning (RL) experiments in Python. RLPy provides a large library of agent and domain components, and a suite of tools to aid in experiments (parallelization, hyperparameter optimization, code profiling, and plotting).

Changes:
  • Fixed bug where results using same random seed were different with visualization turned on/off
  • Created RLPy package on pypi (Available at https://pypi.python.org/pypi/rlpy)
  • Switched from custom logger class to python default
  • Added unit tests
  • Code readability improvements (formatting, variable names/ordering)
  • Restructured TD Learning heirarchy
  • Updated tutorials