Projects that are tagged with regression.
Showing Items 1-20 of 45 on page 1 of 3: 1 2 3 Next

Logo AutoWEKA 2.0

by larsko - May 19, 2016, 19:58:41 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 432 views, 61 downloads, 2 subscriptions

About: Automatically finds the best model with its best parameter settings for a given classification or regression task.

Changes:

Initial Announcement on mloss.org.


Logo WEKA 3.9.0

by mhall - April 15, 2016, 06:35:30 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 57726 views, 8627 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 6 votes)

About: The Weka workbench contains a collection of visualization tools and algorithms for data analysis and predictive modelling, together with graphical user interfaces for easy access to this [...]

Changes:

In core weka:

  • JAMA-based linear algebra routines replaced with MTJ. Faster operation with the option to use native libraries for even more speed
  • General efficiency improvements in core, filters and some classifiers
  • GaussianProcesses now handles instance weights
  • New Knowledge Flow implementation. Engine completely rewritten from scratch with a simplified API
  • New Workbench GUI
  • GUI package manager now has a search facility
  • FixedDictionaryStringToWordVector filter allows the use of an external dictionary for vectorization. DictionarySaver converter can be used to create a dictionary file

In packages:

  • Packages that were using JAMA are now using MTJ
  • New netlibNativeOSX, netlibNativeWindows and netlibNativeLinux packages providing native reference implementations (and system-optimized implementation in the case of OSX) of BLAS, LAPACK and ARPACK linear algebra
  • New elasticNet package, courtesy of Nikhil Kinshore
  • New niftiLoader package for loading a directory with MIR data in NIfTI format into Weka
  • New percentageErrorMetrics package - provides plugin evaluation metrics for root mean square percentage error and mean absolute percentage error
  • New iterativeAbsoluteErrorRegression package - provides a meta learner that fits a regression model to minimize absolute error
  • New largeScaleKernelLearning package - contains filters for large-scale kernel-based learning
  • discriminantAnalysis package now contains an implementation for LDA and QDA
  • New Knowledge Flow component implementations in various packages
  • newKnowledgeFlowStepExamples package - contains code examples for new Knowledge Flow API discussion in the Weka Manual
  • RPlugin updated to latest version of MLR
  • scatterPlot3D and associationRulesVisualizer packages updated with latest Java 3D libraries
  • Support for pluggable activation functions in the multiLayerPerceptrons package

Logo Java Statistical Analysis Tool 0.0.4

by EdwardRaff - March 5, 2016, 06:28:14 CET [ Project Homepage BibTeX Download ] 705 views, 183 downloads, 2 subscriptions

About: General purpose Java Machine Learning library for classification, regression, and clustering.

Changes:

Initial Announcement on mloss.org.


Logo KeLP 2.0.2

by kelpadmin - February 17, 2016, 09:03:46 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7705 views, 1971 downloads, 3 subscriptions

About: Kernel-based Learning Platform (KeLP) is Java framework that supports the implementation of kernel-based learning algorithms, as well as an agile definition of kernel functions over generic data representation, e.g. vectorial data or discrete structures. The framework has been designed to decouple kernel functions and learning algorithms, through the definition of specific interfaces. Once a new kernel function has been implemented, it can be automatically adopted in all the available kernel-machine algorithms. KeLP includes different Online and Batch Learning algorithms for Classification, Regression and Clustering, as well as several Kernel functions, ranging from vector-based to structural kernels. It allows to build complex kernel machine based systems, leveraging on JSON/XML interfaces to instantiate prediction models without writing a single line of code.

Changes:

In addition to minor bug fixes, this release includes:

  • the Nystrom method for linearizing instances and allowing a large scale kernel learning

  • New examples for the usage of the Smoothed Partial Tree Kernel and the Compositionally Smoothed Partial Tree Kernel.

Check out this new version from our repositories. API Javadoc is already available. Your suggestions will be very precious for us, so download and try KeLP 2.0.2!


Logo MLweb 0.1.3

by lauerfab - December 17, 2015, 10:29:35 CET [ Project Homepage BibTeX Download ] 3572 views, 892 downloads, 3 subscriptions

About: MLweb is an open source project that aims at bringing machine learning capabilities into web pages and web applications, while maintaining all computations on the client side. It includes (i) a javascript library to enable scientific computing within web pages, (ii) a javascript library implementing machine learning algorithms for classification, regression, clustering and dimensionality reduction, (iii) a web application providing a matlab-like development environment.

Changes:
  • Improve NaiveBayes classifier
  • Add online training functions for KNN and NaiveBayes
  • Fix save/load workspace in LALOLab
  • Fix nullspace()
  • Small bug fixes

Logo JMLR dlib ml 18.18

by davis685 - October 29, 2015, 01:48:44 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 139416 views, 22828 downloads, 4 subscriptions

About: This project is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.

Changes:

This release has focused on build system improvements, both for the Python API and C++ builds using CMake. This includes adding a setup.py script for installing the dlib Python API as well as a make install target for installing a C++ shared library for non-Python use.


Logo SALSA.jl 0.0.5

by jumutc - September 28, 2015, 17:28:56 CET [ Project Homepage BibTeX Download ] 1213 views, 244 downloads, 1 subscription

About: SALSA (Software lab for Advanced machine Learning with Stochastic Algorithms) is an implementation of the well-known stochastic algorithms for Machine Learning developed in the high-level technical computing language Julia. The SALSA software package is designed to address challenges in sparse linear modelling, linear and non-linear Support Vector Machines applied to large data samples with user-centric and user-friendly emphasis.

Changes:

Initial Announcement on mloss.org.


Logo YCML 0.2.2

by yconst - August 24, 2015, 20:28:45 CET [ Project Homepage BibTeX Download ] 1343 views, 298 downloads, 3 subscriptions

About: A Machine Learning framework for Objective-C and Swift (OS X / iOS)

Changes:

Initial Announcement on mloss.org.


Logo JMLR GPstuff 4.6

by avehtari - July 15, 2015, 15:08:06 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 32003 views, 7699 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 1 vote)

About: The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

Changes:

2015-07-09 Version 4.6

Development and release branches available at https://github.com/gpstuff-dev/gpstuff

New features

  • Use Pareto smoothed importance sampling (Vehtari & Gelman, 2015) for

  • importance sampling leave-one-out cross-validation (gpmc_loopred.m)

  • importance sampling integration over hyperparameters (gp_ia.m)

  • importance sampling part of the logistic Gaussian process density estimation (lgpdens.m)

  • references:

    • Aki Vehtari and Andrew Gelman (2015). Pareto smoothed importance sampling. arXiv preprint arXiv:1507.02646.
    • Aki Vehtari, Andrew Gelman and Jonah Gabry (2015). Efficient implementation of leave-one-out cross-validation and WAIC for evaluating fitted Bayesian models.
  • New covariance functions

    • gpcf_additive creates a mixture over products of kernels for each dimension reference: Duvenaud, D. K., Nickisch, H., & Rasmussen, C. E. (2011). Additive Gaussian processes. In Advances in neural information processing systems, pp. 226-234.
    • gpcf_linearLogistic corresponds to logistic mean function
    • gpcf_linearMichelismenten correpsonds Michelis Menten mean function

Improvements - faster EP moment calculation for lik_logit

Several minor bugfixes


Logo JMLR GPML Gaussian Processes for Machine Learning Toolbox 3.6

by hn - July 6, 2015, 12:31:28 CET [ Project Homepage BibTeX Download ] 33364 views, 7668 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 2 votes)

About: The GPML toolbox is a flexible and generic Octave 3.2.x and Matlab 7.x implementation of inference and prediction in Gaussian Process (GP) models.

Changes:
  • added a new inference function infGrid_Laplace allowing to use non-Gaussian likelihoods for large grids

  • fixed a bug due to Octave evaluating norm([]) to a tiny nonzero value, modified all lik/lik*.m functions reported by Philipp Richter

  • small bugfixes in covGrid and infGrid

  • bugfix in predictive variance of likNegBinom due to Seth Flaxman

  • bugfix in infFITC_Laplace as suggested by Wu Lin

  • bugfix in covPP{iso,ard}


Logo Hivemall 0.3

by myui - March 13, 2015, 17:08:22 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 9167 views, 1589 downloads, 3 subscriptions

About: Hivemall is a scalable machine learning library running on Hive/Hadoop.

Changes:
  • Supported Matrix Factorization
  • Added a support for TF-IDF computation
  • Supported AdaGrad/AdaDelta
  • Supported AdaGradRDA classification
  • Added normalization scheme

Logo pyGPs 1.3.2

by mn - January 17, 2015, 13:08:43 CET [ Project Homepage BibTeX Download ] 7303 views, 1707 downloads, 4 subscriptions

About: pyGPs is a Python package for Gaussian process (GP) regression and classification for machine learning.

Changes:

Changelog pyGPs v1.3.2

December 15th 2014

  • pyGPs added to pip
  • mathematical definitions of kernel functions available in documentation
  • more error message added

Logo The Statistical ToolKit 0.8.4

by joblion - December 5, 2014, 13:21:47 CET [ Project Homepage BibTeX Download ] 2475 views, 726 downloads, 2 subscriptions

About: STK++: A Statistical Toolkit Framework in C++

Changes:

Inegrating openmp to the current release. Many enhancement in the clustering project. bug fix


Logo linearizedGP 1.0

by dsteinberg - November 28, 2014, 07:02:54 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 1960 views, 441 downloads, 1 subscription

About: Gaussian processes with general nonlinear likelihoods using the unscented transform or Taylor series linearisation.

Changes:

Initial Announcement on mloss.org.


Logo Boosted Decision Trees and Lists 1.0.4

by melamed - July 25, 2014, 23:08:32 CET [ BibTeX Download ] 5937 views, 1775 downloads, 3 subscriptions

About: Boosting algorithms for classification and regression, with many variations. Features include: Scalable and robust; Easily customizable loss functions; One-shot training for an entire regularization path; Continuous checkpointing; much more

Changes:
  • added ElasticNets as a regularization option
  • fixed some segfaults, memory leaks, and out-of-range errors, which were creeping in in some corner cases
  • added a couple of I/O optimizations

Logo Kernel Adaptive Filtering Toolbox 1.4

by steven2358 - May 26, 2014, 18:24:23 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7289 views, 1276 downloads, 1 subscription

About: A Matlab benchmarking toolbox for online and adaptive regression with kernels.

Changes:
  • Improvements and demo script for profiler
  • Initial version of documentation
  • Several new algorithms

Logo MLDemos 0.5.1

by basilio - March 2, 2013, 16:06:13 CET [ Project Homepage BibTeX Download ] 26982 views, 6051 downloads, 2 subscriptions

About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning.

Changes:

New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance

New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)


Logo Orange 2.6

by janez - February 14, 2013, 18:15:08 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16563 views, 3221 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 1 vote)

About: Orange is a component-based machine learning and data mining software. It includes a friendly yet powerful and flexible graphical user interface for visual programming. For more advanced use(r)s, [...]

Changes:

The core of the system (except the GUI) no longer includes any GPL code and can be licensed under the terms of BSD upon request. The graphical part remains under GPL.

Changed the BibTeX reference to the paper recently published in JMLR MLOSS.


About: This local and parallel computation toolbox is the Octave and Matlab implementation of several localized Gaussian process regression methods: the domain decomposition method (Park et al., 2011, DDM), partial independent conditional (Snelson and Ghahramani, 2007, PIC), localized probabilistic regression (Urtasun and Darrell, 2008, LPR), and bagging for Gaussian process regression (Chen and Ren, 2009, BGP). Most of the localized regression methods can be applied for general machine learning problems although DDM is only applicable for spatial datasets. In addition, the GPLP provides two parallel computation versions of the domain decomposition method. The easiness of being parallelized is one of the advantages of the localized regression, and the two parallel implementations will provide a good guidance about how to materialize this advantage as software.

Changes:

Initial Announcement on mloss.org.


Logo MLPY Machine Learning Py 3.5.0

by albanese - March 15, 2012, 09:52:41 CET [ Project Homepage BibTeX Download ] 68693 views, 12734 downloads, 2 subscriptions

Rating Whole StarWhole StarWhole Star1/2 StarEmpty Star
(based on 3 votes)

About: mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL.

Changes:

New features:

  • LibSvm(): pred_probability() now returns probability estimates; pred_values() added
  • LibLinear(): pred_values() and pred_probability() added
  • dtw_std: squared Euclidean option added
  • LCS for series composed by real values (lcs_real()) added
  • Documentation

Fix:

  • wavelet submodule: cwt(): it returned only real values in morlet and poul
  • IRelief(): remove np. in learn()
  • fix rfe_kfda and rfe_w2 when p=1

Showing Items 1-20 of 45 on page 1 of 3: 1 2 3 Next