Projects that are tagged with python.


Logo RLPy 1.3a

by bobklein2 - August 28, 2014, 14:34:35 CET [ Project Homepage BibTeX Download ] 1815 views, 403 downloads, 1 subscription

About: RLPy is a framework for performing reinforcement learning (RL) experiments in Python. RLPy provides a large library of agent and domain components, and a suite of tools to aid in experiments (parallelization, hyperparameter optimization, code profiling, and plotting).

Changes:
  • Fixed bug where results using same random seed were different with visualization turned on/off
  • Created RLPy package on pypi (Available at https://pypi.python.org/pypi/rlpy)
  • Switched from custom logger class to python default
  • Added unit tests
  • Code readability improvements (formatting, variable names/ordering)
  • Restructured TD Learning heirarchy
  • Updated tutorials

Logo OpenOpt 0.54

by Dmitrey - June 15, 2014, 14:50:37 CET [ Project Homepage BibTeX Download ] 42192 views, 8861 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Universal Python-written numerical optimization toolbox. Problems: NLP, LP, QP, NSP, MILP, LSP, LLSP, MMP, GLP, SLE, MOP etc; general logical constraints, categorical variables, automatic differentiation, stochastic programming, interval analysis, many other goodies

Changes:

http://openopt.org/Changelog


Logo JMLR SHOGUN 3.2.0

by sonne - February 17, 2014, 20:31:36 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 84877 views, 11786 downloads, 5 subscriptions

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 6 votes)

About: The SHOGUN machine learning toolbox's focus is on large scale learning methods with focus on Support Vector Machines (SVM), providing interfaces to python, octave, matlab, r and the command line.

Changes:

This is mostly a bugfix release:

Features

  • Fully support python3 now
  • Add mini-batch k-means [Parijat Mazumdar]
  • Add k-means++ [Parijat Mazumdar]
  • Add sub-sequence string kernel [lambday]

Bugfixes

  • Compile fixes for upcoming swig3.0
  • Speedup for gaussian process' apply()
  • Improve unit / integration test checks
  • libbmrm uninitialized memory reads
  • libocas uninitialized memory reads
  • Octave 3.8 compile fixes [Orion Poplawski]
  • Fix java modular compile error [Bjoern Esser]

Logo Theano 0.6

by jaberg - December 3, 2013, 20:32:02 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 13133 views, 2459 downloads, 1 subscription

About: A Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Dynamically generates CPU and GPU modules for good performance. Deep Learning Tutorials illustrate deep learning with Theano.

Changes:

Theano 0.6 (December 3th, 2013)

Highlight:

* Last release with support for Python 2.4 and 2.5.
* We will try to release more frequently.
* Fix crash/installation problems.
* Use less memory for conv3d2d.

0.6rc4 skipped for a technical reason.

Highlights (since 0.6rc3):

* Python 3.3 compatibility with buildbot test for it.
* Full advanced indexing support.
* Better Windows 64 bit support.
* New profiler.
* Better error messages that help debugging.
* Better support for newer NumPy versions (remove useless warning/crash).
* Faster optimization/compilation for big graph.
* Move in Theano the Conv3d2d implementation.
* Better SymPy/Theano bridge: Make an Theano op from SymPy expression and use SymPy c code generator.
* Bug fixes.

Too much changes in 0.6rc1, 0.6rc2 and 0.6rc3 to list here. See https://github.com/Theano/Theano/blob/master/NEWS.txt for details.


Logo Milk 0.5

by luispedro - November 7, 2012, 13:08:28 CET [ Project Homepage BibTeX Download ] 20986 views, 5056 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarEmpty StarEmpty Star
(based on 2 votes)

About: Python Machine Learning Toolkit

Changes:

Added LASSO (using coordinate descent optimization). Made SVM classification (learning and applying) much faster: 2.5x speedup on yeast UCI dataset.


Logo PyMVPA Multivariate Pattern Analysis in Python 2.0.0

by yarikoptic - December 22, 2011, 01:36:32 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 29427 views, 5424 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole StarEmpty Star
(based on 2 votes)

About: Python module to ease pattern classification analyses of large datasets. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, [...]

Changes:
  • 2.0.0 (Mon, Dec 19 2011)

This release aggregates all the changes occurred between official releases in 0.4 series and various snapshot releases (in 0.5 and 0.6 series). To get better overview of high level changes see :ref:release notes for 0.5 <chap_release_notes_0.5> and :ref:0.6 <chap_release_notes_0.6> as well as summaries of release candidates below

  • Fixes (23 BF commits)

    • significance level in the right tail was fixed to include the value tested -- otherwise resulted in optimistic bias (or absurdly high significance in improbable case if all estimates having the same value)
    • compatible with the upcoming IPython 0.12 and renamed sklearn (Fixes #57)
    • do not double-train slave classifiers while assessing sensitivities (Fixes #53)
  • Enhancements (30 ENH + 3 NF commits)

    • resolving voting ties in kNN based on mean distance, and randomly in SMLR
    • :class:kNN's ca.estimates now contains dictionaries with votes for each class
    • consistent zscoring in :class:Hyperalignment
  • 2.0.0~rc5 (Wed, Oct 19 2011)

  • Major: to allow easy co-existence of stable PyMVPA 0.4.x, 0.6 development mvpa module was renamed into mod:mvpa2.

  • Fixes

    • compatible with the new Shogun 1.x series
    • compatible with the new h5py 2.x series
    • mvpa-prep-fmri -- various compatibility fixes and smoke testing
    • deepcopying :class:SummaryStatistics during add
  • Enhancements

    • tutorial uses :mod:mvpa2.tutorial_suite now
    • better suppression of R warnings when needed
    • internal attributes of many classes were exposed as properties
    • more unification of __repr__ for many classes
  • 0.6.0~rc4 (Wed, Jun 14 2011)

  • Fixes

    • Finished transition to :mod:nibabel conventions in plot_lightbox
    • Addressed :mod:matplotlib.hist API change
    • Various adjustments in the tests batteries (:mod:nibabel 1.1.0 compatibility, etc)
  • New functionality

    • Explicit new argument flatten to from_wizard -- default behavior changed if mapper was provided as well
  • Enhancements

    • Elaborated __str__ and __repr__ for some Classifiers and Measures
  • 0.6.0~rc3 (Thu, Apr 12 2011)

  • Fixes

    • Bugfixes regarding the interaction of FlattenMapper and BoxcarMapper that affected event-related analyses.
    • Splitter now handles attribute value None for splitting properly.
    • GNBSearchlight handling of
      roi_ids.
    • More robust detection of mod:scikits.learn and :mod:nipy externals.
  • New functionality

    • Added a Repeater node to yield a dataset multiple times and
      Sifter node to exclude some datasets. Consequently, the "nosplitting" mode of Splitter got removed at the same time.
    • :file:tools/niils -- little tool to list details (dimensionality, scaling, etc) of the files in nibabel-supported formats.
  • Enhancements

    • Numerous documentation fixes.
    • Various improvements and increased flexibility of null distribution estimation of Measures.
    • All attribute are now reported in sorted order when printing a dataset.
    • fmri_dataset now also stores the input image type.
    • Crossvalidation can now take a custom Splitter instance. Moreover, the default splitter of CrossValidation is more robust in terms of number and type of created splits for common usage patterns (i.e. together with partitioners).
    • CrossValidation takes any custom Node as errorfx argument.
    • ConfusionMatrix can now be used as an errorfx in Crossvalidation.
    • LOE(ACC): Linear Order Effect in ACC was added to
      ConfusionMatrix to detect trends in performances across splits.
    • A Node s postproc is now accessible as a property.
    • RepeatedMeasure has a new 'concat_as' argument that allows results to be concatenated along the feature axis. The default behavior, stacking as multiple samples, is unchanged.
    • Searchlight now has the ability to mark the center/seed of an ROI in with a feature attribute in the generated datasets.
    • debug takes args parameter for delayed string comprehensions. It should reduce run-time impact of debug() calls in regular, non -O mode of Python operation.
    • String summaries and representations (provided by __str__ and __repr__) were made more exhaustive and more coherent. Additional properties to access initial constructor arguments were added to variety of classes.
  • Internal changes

    • New debug target STDOUT to allow attaching metrics (e.g. traceback, timestamps) to regular output printed to stdout

    • New set of decorators to help with unittests

    • @nodebug to disable specific debug targets for the duration of the test.

    • @reseed_rng to guarantee consistent random data given initial seeding.

    • @with_tempfile to provide a tempfile name which would get removed upon completion (test success or failure)

    • Dropping daily testing of maint/0.5 branch -- RIP.

    • Collection s were provided with adequate (deep|)copy. And Dataset was refactored to use Collection s copy method.

    • update-* Makefile rules automatically should fast-forward corresponding website-updates branch

    • MVPA_TESTS_VERBOSITY controls also :mod:numpy warnings now.

    • Dataset.__array__ provides original array instead of copy (unless dtype is provided)

Also adapts changes from 0.4.6 and 0.4.7 (see corresponding changelogs).

  • 0.6.0~rc2 (Thu, Mar 3 2011)

  • Various fixes in the mvpa.atlas module.

  • 0.6.0~rc1 (Thu, Feb 24 2011)

  • Many, many, many

  • For an overview of the most drastic changes :ref:see constantly evolving release notes for 0.6 <chap_release_notes_0.6>

  • 0.5.0 (sometime in March 2010)

This is a special release, because it has never seen the general public. A summary of fundamental changes introduced in this development version can be seen in the :ref:release notes <chap_release_notes_0.5>.

Most notably, this version was to first to come with a comprehensive two-day workshop/tutorial.

  • 0.4.7 (Tue, Mar 07 2011) (Total: 12 commits)

A bugfix release

  • Fixed

    • Addressed the issue with input NIfTI files having scl_ fields set: it could result in incorrect analyses and map2nifti-produced NIfTI files. Now input files account for scaling/offset if scl_ fields direct to do so. Moreover upon map2nifti, those fields get reset.
    • :file:doc/examples/searchlight_minimal.py - best error is the minimal one
  • Enhancements

    • :class:~mvpa.clfs.gnb.GNB can now tolerate training datasets with a single label
    • :class:~mvpa.clfs.meta.TreeClassifier can have trailing nodes with no classifier assigned
  • 0.4.6 (Tue, Feb 01 2011) (Total: 20 commits)

A bugfix release

  • Fixed (few BF commits):

    • Compatibility with numpy 1.5.1 (histogram) and scipy 0.8.0 (workaround for a regression in legendre)
    • Compatibility with libsvm 3.0
    • :class:~mvpa.clfs.plr.PLR robustification
  • Enhancements

    • Enforce suppression of numpy warnings while running unittests. Also setting verbosity >= 3 enables all warnings (Python, NumPy, and PyMVPA)
    • :file:doc/examples/nested_cv.py example (adopted from 0.5)
    • Introduced base class :class:~mvpa.clfs.base.LearnerError for classifiers' exceptions (adopted from 0.5)
    • Adjusted example data to live upto nibabel's warranty of NIfTI standard-compliance
    • More robust operation of MC iterations -- skip iterations where classifier experienced difficulties and raise an exception (e.g. due to degenerate data)

Logo mldata-utils 0.5.0

by sonne - April 8, 2011, 10:02:44 CET [ Project Homepage BibTeX Download ] 19337 views, 4061 downloads, 1 subscription

About: Tools to convert datasets from various formats to various formats, performance measures and API functions to communicate with mldata.org

Changes:
  • Change task file format, such that data splits can have a variable number items and put into up to 256 categories of training/validation/test/not used/...
  • Various bugfixes.

Logo scikits.learn 0.6

by fabianp - December 22, 2010, 11:58:30 CET [ Project Homepage BibTeX Download ] 6518 views, 1204 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 3 votes)

About: Obsolete. Use https://mloss.org/software/view/240/ instead.

Changes:

0.6 release


Logo BCPy2000 17374

by jez - July 8, 2010, 22:11:24 CET [ Project Homepage BibTeX Download ] 13819 views, 2543 downloads, 1 subscription

About: BCPy2000 provides a platform for rapid, flexible development of experimental Brain-Computer Interface systems based on the BCI2000.org project. From the developer's point of view, the implementation [...]

Changes:

Bugfixes and tuneups, and an expanded set of (some more-, some less-documented, optional tools)


Logo yaplf 0.7

by malchiod - April 22, 2010, 11:34:07 CET [ Project Homepage BibTeX Download ] 3313 views, 810 downloads, 1 subscription

About: yaplf (Yet Another Python Learning Framework) is an extensible machine learning framework written in python

Changes:

Initial Announcement on mloss.org.


Logo Elefant 0.4

by kishorg - October 17, 2009, 08:48:19 CET [ Project Homepage BibTeX Download ] 16828 views, 7370 downloads, 2 subscriptions

Rating Whole StarWhole Star1/2 StarEmpty StarEmpty Star
(based on 2 votes)

About: Elefant is an open source software platform for the Machine Learning community licensed under the Mozilla Public License (MPL) and developed using Python, C, and C++. We aim to make it the platform [...]

Changes:

This release contains the Stream module as a first step in the direction of providing C++ library support. Stream aims to be a software framework for the implementation of large scale online learning algorithms. Large scale, in this context, should be understood as something that does not fit in the memory of a standard desktop computer.

Added Bundle Methods for Regularized Risk Minimization (BMRM) allowing to choose from a list of loss functions and solvers (linear and quadratic).

Added the following loss classes: BinaryClassificationLoss, HingeLoss, SquaredHingeLoss, ExponentialLoss, LogisticLoss, NoveltyLoss, LeastMeanSquareLoss, LeastAbsoluteDeviationLoss, QuantileRegressionLoss, EpsilonInsensitiveLoss, HuberRobustLoss, PoissonRegressionLoss, MultiClassLoss, WinnerTakesAllMultiClassLoss, ScaledSoftMarginMultiClassLoss, SoftmaxMultiClassLoss, MultivariateRegressionLoss

Graphical User Interface provides now extensive documentation for each component explaining state variables and port descriptions.

Changed saving and loading of experiments to XML (thereby avoiding storage of large input data structures).

Unified automatic input checking via new static typing extending Python properties.

Full support for recursive composition of larger components containing arbitrary statically typed state variables.


Logo Dirichlet Forest LDA 0.1.1

by davidandrzej - July 16, 2009, 21:59:53 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 4567 views, 886 downloads, 1 subscription

About: This software implements the Dirichlet Forest (DF) Prior within the Latent Dirichlet Allocation (LDA) model. When combined with LDA, the Dirichlet Forest Prior allows the user to encode domain knowledge (must-links and cannot-links between words) into the prior on topic-word multinomials.

Changes:

Initial Announcement on mloss.org.


Logo DeltaLDA 0.1.1

by davidandrzej - July 16, 2009, 21:52:18 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 7030 views, 1218 downloads, 1 subscription

About: This software implements the DeltaLDA model, which is a modification of the Latent Dirichlet Allocation (LDA) model. DeltaLDA can use multiple topic mixing weight priors to jointly model multiple [...]

Changes:

-fixed some npy_intp[] memory leaks -fixed phi normalization bug


Logo JMLR pebl Python Environment for Bayesian Learning 1.0.1

by abhik - March 5, 2009, 00:05:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 22307 views, 2161 downloads, 1 subscription

About: Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations.

Changes:

Updated version to 1.0.1


Logo monte python 0.1.0

by roro - May 9, 2008, 21:45:47 CET [ Project Homepage BibTeX Download ] 5464 views, 2145 downloads, 1 subscription

About: Monte (python) is a small machine learning library written in pure Python. The focus is on gradient based learning, in particular on the construction of complex models from many smaller components.

Changes:

Initial Announcement on mloss.org.