About: Caffe aims to provide computer vision scientists with a clean, modifiable implementation of stateoftheart deep learning algorithms. We believe that Caffe is the fastest available GPU CNN implementation. Caffe also provides seamless switching between CPU and GPU, which allows one to train models with fast GPUs and then deploy them on nonGPU clusters. Even in CPU mode, computing predictions on an image takes only 20 ms (in batch mode). Changes:LOTS of stuff: https://github.com/BVLC/caffe/releases/tag/v0.9999

About: This is demo program on global thresholding for image of bright small objects, such as aircrafts in airports. the program include four method, otsu,2DTsallis,PSSIM, Smoothnees Method. Changes:Initial Announcement on mloss.org.

About: In this paper, we propose an improved principal component analysis based on maximum entropy (MaxEnt) preservation, called MaxEntPCA, which is derived from a Parzen window estimation of Renyi’s quadratic entropy. Instead of minimizing the reconstruction error either based on L2norm or L1norm, the MaxEntPCA attempts to preserve as much as possible the uncertainty information of the data measured by entropy. The optimal solution of MaxEntPCA consists of the eigenvectors of a Laplacian probability matrix corresponding to the MaxEnt distribution. MaxEntPCA (1) is rotation invariant, (2) is free from any distribution assumption, and (3) is robust to outliers. Extensive experiments on realworld datasets demonstrate the effectiveness of the proposed linear method as compared to other related robust PCA methods. Changes:Initial Announcement on mloss.org.

About: This code is developed based on Uriel Roque's active set algorithm for the linear least squares problem with nonnegative variables in: Portugal, L.; Judice, J.; and Vicente, L. 1994. A comparison of block pivoting and interiorpoint algorithms for linear least squares problems with nonnegative variables. Mathematics of Computation 63(208):625643.Ran He, WeiShi Zheng and Baogang Hu, "Maximum Correntropy Criterion for Robust Face Recognition," IEEE TPAMI, in press, 2011. Changes:Initial Announcement on mloss.org.

About: OpenPRNBEM is an C++ implementation of Naive Bayes Classifier, which is a wellknown generative classification algorithm for the application such as text classification. The Naive Bayes algorithm requires the probabilistic distribution to be discrete. OpenPRNBEM uses the multinomial event model for representation. The maximum likelihood estimate is used for supervised learning, and the expectationmaximization estimate is used for semisupervised and unsupervised learning. Changes:Initial Announcement on mloss.org.

About: This is a class to calculate histogram of LBP (local binary patterns) from an input image, histograms of LBPTOP (local binary patterns on three orthogonal planes) from an image sequence, histogram of the rotation invariant VLBP (volume local binary patterns) or uniform rotation invariant VLBP from an image sequence. Changes:Initial Announcement on mloss.org.

About: This program implements a novel robust sparse representation method, called the twostage sparse representation (TSR), for robust recognition on a largescale database. Based on the divide and conquer strategy, TSR divides the procedure of robust recognition into outlier detection stage and recognition stage. The extensive numerical experiments on several public databases demonstrate that the proposed TSR approach generally obtains better classification accuracy than the stateoftheart Sparse Representation Classification (SRC). At the same time, by using the TSR, a significant reduction of computational cost is reached by over fifty times in comparison with the SRC, which enables the TSR to be deployed more suitably for largescale dataset. Changes:Initial Announcement on mloss.org.

About: It's a C++ program for symmetric matrix diagonalization, inversion and principal component anlaysis(PCA). The matrix diagonalization function can also be applied to the computation of singular value decomposition (SVD), Fisher linear discriminant analysis (FLDA) and kernel PCA (KPCA) if forming the symmetric matrix appropriately. Changes:Initial Announcement on mloss.org.

About: This program is a C++ implementation of Naive Bayes Classifier, which is a wellknown generative classification algorithm for the application such as text classification. The Naive Bayes algorithm requires the probabilistic distribution to be discrete. The program uses the multinomial event model for representation, the maximum likelihood estimate with a Laplace smoothing technique for learning parameters. A sparsedata structure is defined to represent the feature vector in the program to seek higher computational speed. Changes:Initial Announcement on mloss.org.

About: Supervised Latent Semantic Indexing(SLSI) is an supervised feature transformation method. The algorithms in this package are based on the iterative algorithm of Latent Semantic Indexing. Changes:Initial Announcement on mloss.org.

About: This program is used to extract HOG(histograms of oriented gradients) features from images. The integral histogram is used for fast histogram extraction. Both APIs and binary utility are provided. Changes:Initial Announcement on mloss.org.

About: Hofmann, T. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd ACMSIGIR International Conference on Research and Development in Information Retrieval (Berkeley,Calif.), ACM, New York, 50–57. Changes:Initial Announcement on mloss.org.

About: MeanShift (MS) is a powerful nonparametric clustering method. Although good accuracy can be achieved, its computational cost is particularly expensive even on moderate data sets. For the purpose of algorithm speedup, an agglomerative MS clustering method called AggloMS was developed, along with its modeseeking ability and convergence property analysis. The method is built upon an iterative query set compression mechanism which is motivated by the quadratic bounding optimization nature of MS. The whole framework can be efficiently implemented in linear running time complexity. Changes:Initial Announcement on mloss.org.

About: The toolbox is to calculate normalized information measures from a given m by (m+1) confusion matrix for objective evaluations of an abstaining classifier. It includes total 24 normalized information measures based on three groups of definitions, that is, mutual information, information divergence, and cross entropy. Changes:Initial Announcement on mloss.org.

About: Scilab Pattern Recognition Toolbox is a toolbox developed for Scilab software, and is used in pattern recognition, machine learning and the related field. It is developed for the purpose of education and research. Changes:Initial Announcement on mloss.org.

About: Sequin is an open source sequence mining library written in C#. Changes:Sequin v1.1.0.0 released

About: GIDOC (Gimpbased Interactive transcription of old text DOCuments) is a computerassisted transcription prototype for handwritten text in old documents. It is a first attempt to provide integrated support for interactivepredictive page layout analysis, text line detection and handwritten text transcription. GIDOC is built on top of the wellknown GNU Image Manipulation Program (GIMP), and uses standard techniques and tools for handwritten text preprocessing and feature extraction, HMMbased image modelling, and language modelling. Changes:Updated version for mloss 2010
