Projects that are tagged with kernels.


Logo KeLP 2.2.0

by kelpadmin - April 7, 2017, 16:51:42 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 14116 views, 3127 downloads, 3 subscriptions

About: Kernel-based Learning Platform (KeLP) is Java framework that supports the implementation of kernel-based learning algorithms, as well as an agile definition of kernel functions over generic data representation, e.g. vectorial data or discrete structures. The framework has been designed to decouple kernel functions and learning algorithms, through the definition of specific interfaces. Once a new kernel function has been implemented, it can be automatically adopted in all the available kernel-machine algorithms. KeLP includes different Online and Batch Learning algorithms for Classification, Regression and Clustering, as well as several Kernel functions, ranging from vector-based to structural kernels. It allows to build complex kernel machine based systems, leveraging on JSON/XML interfaces to instantiate prediction models without writing a single line of code.

Changes:

In addition to minor bug fixes, this release includes:

  • A new learning algorithm that enable (for the first time in KeLP) to deal with sequences labeling problems! It is based on a Markovian formulation within a SVM framework. Most noticeably: this new meta-algorithm for sequence learning can deal both with linear algorithms and with kernel-based algorithms!

  • A new cache (SimpleDynamicKernelCache) has been added to avoid the need of specifying the number of expected items in the dataset. It is not specialized for any learning algorithm, so it is not the most efficient cache, but it is very easy to use.

Furthermore we also released a brand new web site www.kelp-ml.org, where you can find several tutorials and documentation about KeLP!

Check out this new version from our repositories. API Javadoc is already available. Your suggestions will be very precious for us, so download and try KeLP 2.2.0!


Logo JMLR JKernelMachines 3.0

by dpicard - May 4, 2016, 17:53:28 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 36744 views, 7894 downloads, 4 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 4 votes)

About: machine learning library in java for easy development of new kernels and kernel algorithms

Changes:

Version 3.0

/! Warning: this version is incompatible with previous code

  • change license to BSD 3-clauses
  • change package name to net.jkernelmachines
  • change to maven build system (available through central)
  • online training interfaces to allow continuous online learning
  • add a new budget oriented kernel classifier
  • new kernel and processing especially for strings

Logo APCluster 1.4.3

by UBod - February 25, 2016, 16:22:36 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 40334 views, 6863 downloads, 3 subscriptions

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 2 votes)

About: The apcluster package implements Frey's and Dueck's Affinity Propagation clustering in R. The package further provides leveraged affinity propagation, exemplar-based agglomerative clustering, and various tools for visual analysis of clustering results.

Changes:
  • added optional color legend to heatmap plotting; in line with this change, some minor changes to the interface of the heatmap() function
  • corresponding updates of help pages and vignette

Logo KeBABS 1.4.1

by UBod - November 3, 2015, 11:33:46 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 16897 views, 3063 downloads, 3 subscriptions

About: Kernel-Based Analysis of Biological Sequences

Changes:
  • new method to compute prediction profiles from models trained with mixture kernels
  • correction for position specific kernel with offsets
  • corrections for prediction profile of motif kernel
  • additional hint on help page of kbsvm

Logo Rchemcpp 1.99.0

by klambaue - September 10, 2013, 09:10:13 CET [ Project Homepage BibTeX Download ] 6975 views, 1642 downloads, 1 subscription

Rating Whole StarWhole StarWhole StarWhole Star1/2 Star
(based on 1 vote)

About: The Rchemcpp package implements the marginalized graph kernel and extensions, Tanimoto kernels, graph kernels, pharmacophore and 3D kernels suggested for measuring the similarity of molecules.

Changes:

Moved from CRAN to Bioconductor. Improved handling of molecules, visualization and examples.


Logo OpenKernel library 0.1

by allauzen - April 23, 2010, 05:25:20 CET [ Project Homepage BibTeX Download ] 12905 views, 1786 downloads, 1 subscription

Rating Whole StarWhole Star1/2 StarEmpty StarEmpty Star
(based on 1 vote)

About: OpenKernel is a library for creating, combining, learning and using kernels for machine learning applications.

Changes:

Initial Announcement on mloss.org.


Logo Elefant 0.4

by kishorg - October 17, 2009, 08:48:19 CET [ Project Homepage BibTeX Download ] 23871 views, 8842 downloads, 2 subscriptions

Rating Whole StarWhole Star1/2 StarEmpty StarEmpty Star
(based on 2 votes)

About: Elefant is an open source software platform for the Machine Learning community licensed under the Mozilla Public License (MPL) and developed using Python, C, and C++. We aim to make it the platform [...]

Changes:

This release contains the Stream module as a first step in the direction of providing C++ library support. Stream aims to be a software framework for the implementation of large scale online learning algorithms. Large scale, in this context, should be understood as something that does not fit in the memory of a standard desktop computer.

Added Bundle Methods for Regularized Risk Minimization (BMRM) allowing to choose from a list of loss functions and solvers (linear and quadratic).

Added the following loss classes: BinaryClassificationLoss, HingeLoss, SquaredHingeLoss, ExponentialLoss, LogisticLoss, NoveltyLoss, LeastMeanSquareLoss, LeastAbsoluteDeviationLoss, QuantileRegressionLoss, EpsilonInsensitiveLoss, HuberRobustLoss, PoissonRegressionLoss, MultiClassLoss, WinnerTakesAllMultiClassLoss, ScaledSoftMarginMultiClassLoss, SoftmaxMultiClassLoss, MultivariateRegressionLoss

Graphical User Interface provides now extensive documentation for each component explaining state variables and port descriptions.

Changed saving and loading of experiments to XML (thereby avoiding storage of large input data structures).

Unified automatic input checking via new static typing extending Python properties.

Full support for recursive composition of larger components containing arbitrary statically typed state variables.


Logo LASVM 1.1

by leonbottou - August 3, 2009, 15:50:30 CET [ Project Homepage BibTeX Download ] 12138 views, 2268 downloads, 0 subscriptions

About: Reference implementation of the LASVM online and active SVM algorithms as described in the JMLR paper. The interesting bit is a small C library that implements the LASVM process and reprocess [...]

Changes:

Minor bug fix


Logo Easysvm 0.3

by gxr - June 25, 2009, 18:33:04 CET [ Project Homepage BibTeX Download ] 10793 views, 2166 downloads, 1 subscription

About: The Easysvm package provides a set of tools based on the Shogun toolbox allowing to train and test SVMs in a simple way.

Changes:

Fixes for shogun 0.7.3.


Logo RapidMiner 4.0

by ingomierswa - November 16, 2007, 02:31:48 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 20813 views, 3586 downloads, 0 comments, 0 subscriptions

Rating Whole StarWhole StarWhole StarWhole StarWhole Star
(based on 5 votes)

About: RapidMiner (formerly YALE) is one of the most widely used open-source data mining suites and software solutions due to its leading-edge technologies and its functional range. Applications of [...]

Changes:

Initial Announcement on mloss.org.