Projects that are tagged with gaussian mixture models.


Logo Cognitive Foundry 3.4.0

by Baz - April 3, 2015, 08:28:14 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 18842 views, 3062 downloads, 3 subscriptions

About: The Cognitive Foundry is a modular Java software library of machine learning components and algorithms designed for research and applications.

Changes:
  • General:
    • Now requires Java 1.7 or higher.
    • Improved compatibility with Java 1.8 functions by removing ClonableSerializable requirement from many function-style interfaces.
  • Common Core:
    • Improved iteration speed over sparse MTJ vectors.
    • Added utility methods for more stable log(1+x), exp(1-x), log(1 - exp(x)), and log(1 + exp(x)) to LogMath.
    • Added method for creating a partial permutations to Permutation.
    • Added methods for computing standard deviation to UnivariateStatisticsUtil.
    • Added increment, decrement, and list view methods to Vector and Matrix.
    • Added shorter versions of get and set for Vector and Matrix getElement and setElement.
    • Added aliases of dot for dotProduct in VectorSpace.
    • Added utility methods for divideByNorm2 to VectorUtil.
  • Learning:
    • Added a learner for a Factorization Machine using SGD.
    • Added a iterative reporter for validation set performance.
    • Added new methods to statistical distribution classes to allow for faster sampling without boxing, in batches, or without creating extra memory.
    • Made generics for performance evaluators more permissive.
    • ParameterGradientEvaluator changed to not require input, output, and gradient types to be the same. This allows more sane gradient definitions for scalar functions.
    • Added parameter to enforce a minimum size in a leaf node for decision tree learning. It is configured through the splitting function.
    • Added ability to filter which dimensions to use in the random subspace and variance tree node splitter.
    • Added ReLU, leaky ReLU, and soft plus activation functions for neural networks.
    • Added IntegerDistribution interface for distributions over natural numbers.
    • Added a method to get the mean of a numeric distribution without boxing.
    • Fixed an issue in DefaultDataDistribution that caused the total to be off when a value was set to less than or equal to 0.
    • Added property for rate to GammaDistribution.
    • Added method to get standard deviation from a UnivariateGaussian.
    • Added clone operations for decision tree classes.
    • Fixed issue TukeyKramerConfidence interval computation.
    • Fixed serialization issue with SMO output.

Logo libcluster 2.1

by dsteinberg - October 31, 2014, 23:27:57 CET [ Project Homepage BibTeX BibTeX for corresponding Paper Download ] 927 views, 203 downloads, 2 subscriptions

About: An extensible C++ library of Hierarchical Bayesian clustering algorithms, such as Bayesian Gaussian mixture models, variational Dirichlet processes, Gaussian latent Dirichlet allocation and more.

Changes:

Initial Announcement on mloss.org.


Logo MLDemos 0.5.1

by basilio - March 2, 2013, 16:06:13 CET [ Project Homepage BibTeX Download ] 20737 views, 4849 downloads, 2 subscriptions

About: MLDemos is a user-friendly visualization interface for various machine learning algorithms for classification, regression, clustering, projection, dynamical systems, reward maximisation and reinforcement learning.

Changes:

New Visualization and Dataset Features Added 3D visualization of samples and classification, regression and maximization results Added Visualization panel with individual plots, correlations, density, etc. Added Editing tools to drag/magnet data, change class, increase or decrease dimensions of the dataset Added categorical dimensions (indexed dimensions with non-numerical values) Added Dataset Editing panel to swap, delete and rename dimensions, classes or categorical values Several bug-fixes for display, import/export of data, classification performance

New Algorithms and methodologies Added Projections to pre-process data (which can then be classified/regressed/clustered), with LDA, PCA, KernelPCA, ICA, CCA Added Grid-Search panel for batch-testing ranges of values for up to two parameters at a time Added One-vs-All multi-class classification for non-multi-class algorithms Trained models can now be kept and tested on new data (training on one dataset, testing on another) Added a dataset generator panel for standard toy datasets (e.g. swissroll, checkerboard,...) Added a number of clustering, regression and classification algorithms (FLAME, DBSCAN, LOWESS, CCA, KMEANS++, GP Classification, Random Forests) Added Save/Load Model option for GMMs and SVMs Added Growing Hierarchical Self Organizing Maps (original code by Michael Dittenbach) Added Automatic Relevance Determination for SVM with RBF kernel (Thanks to Ashwini Shukla!)